Implementasi Model Pembelajaran Calistung Melalui Taman Baca Pothik untuk Meningkatkan Kemampuan Numerasi dan Literasi Kelas 1 SDN Pojokklitih 3 Jombang di Era Covid-19
Abstrak
ABSTRAK
Tujuan penulisan ini adalah untuk mengetahui implementasi model pembelajaran calistung melalui taman baca pothik untuk meningkatkan kemampuan numerasi dan literasi kelas 1 di SDN Pojokklitih 3 Jombang. Kemudian pembelajaran calistung melalui taman baca pothik menjadi salah satu alternative pembelajaran yang menyenangkan bagi siswa. Kondisi siswa yang kurang bisa membaca dan menghitung yang nantinya akan berdampak pada tingkatan selanjutnya. Penelitian ini dilakukan dengan pendekatan kualitatif deskriptif, dengan maksud untuk menghasilkan sebuah data deskriptif yang dihasilkan dari pengumpulan data. Data diperoleh melalui informan menggunakan metode wawancara dengan pertanyaan yang relevan, melakukan observasi langsung, dokumentasi serta audio visual yang dilakukan secara langsung. Kemudian data yang diperoleh dianalisis secara deskriptif. Salah satu upaya untuk meningkatkan kemampuan literasi dan berhitung yaitu dengan menerapkan metode Calistung. Maka dengan demikian berdasarkan kondisi dan situasi yang ada dan sesuai dengan observasi yang dilakukan bahwa model pembelajaran calistung melalui taman baca pothik menambah empati atau kepekaan sosial anak dan meningkatkan nomerasi atau menghitung serta meningkatkan literasi anak. Anak – anak siswa SDN kelas 1 pojokklitih 3 jombang dan mereka sangat senang mengikuti pembelajaran. Karena model pembelajaran tersebut mampu memberikan calistung yang dikemas melalui tamana baca pothik memberikan rasa nyaman dan menyenangkan dalam proses pembelajaran siswa kelas 1 SDN Pojokklitih 3 jombang.
Â
ABSTRACT
The goals of research is to know the implementation of Calistung Learning Model through Taman Baca Pothik to improve numeration and literation competencies of the first grade of students of SDN Pojokklitih 3 Jombang. Then Calistung learning through Taman Baca Pothik was used as an alternative and fun learning for the students. In fact, the students have a lack of competencies in reading and calculating which effect to the achievement of the higher level. This research applies descriptive qualitative approach in order to obtain the descriptive data from the data collection. And it was taken through the informants using the interviews with relevant questions, direct observation, documentation, and a direct audio-visual activity. After that the data was analyzed descriptively. Calistung model was applied in order to improve the competency of literation and calculating. So based on the condition and situation in accordance with the observation that Calistung Learning Model through Taman Baca Pothik could increase the empathy and social awareness of the students that finally the improvement could be achieved especially the first grade students of SDN Pojokklitih 3 Jombang because they ware very happy in joining the learning activity.
Artikel teks lengkap
Referensi
Abbott, P., Mugisha, R., Mtika, P., & Nzabalirwa, W. (2020). Failing adult learners: Why Rwanda’s adult literacy education is not delivering. International Journal of Educational Development, 79(September), 102288. https://doi.org/10.1016/j.ijedudev.2020.102288
Aunio, P., Korhonen, J., Ragpot, L., Törmänen, M., Mononen, R., & Henning, E. (2019). Multi-factorial approach to early numeracy — The effects of cognitive skills , language factors and kindergarten attendance on early numeracy performance of South African first graders. International Journal of Educational Research, 97(February), 65–76. https://doi.org/10.1016/j.ijer.2019.06.011
Bi, X., Shi, X., & Zhang, Z. (2019). Cognitive machine learning model for network information safety. Safety Science, 118(April), 435–441. https://doi.org/10.1016/j.ssci.2019.05.032
Bonati, S., & Mendes, M. P. (2014). Building Participation to Reduce Vulnerability: How Can Local Educational Strategies Promote Global Resilience? A Case Study in Funchal – Madeira Island. Procedia Economics and Finance, 18(September), 165–172. https://doi.org/10.1016/s2212-5671(14)00927-7
Cahyanovianty, A. D. (2020). Analisis Kemampan Numerasi Peserta Didik Kelas VIII dalam Menyelesaikan Soal Asesmen Kompetensi Minimum. 05(02), 1439–1448.
Carter, E., Sabates, R., Rose, P., & Akyeampong, K. (2020). International Journal of Educational Development Sustaining literacy from mother tongue instruction in complementary education into o ffi cial language of instruction in government schools in Ghana. International Journal of Educational Development, 76(January), 102195. https://doi.org/10.1016/j.ijedudev.2020.102195
Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Zuo, M., Zou, X., Wang, J., Zhang, Y., Chen, D., Chen, X., Deng, Y., & Ren, H. (2020). Comparative analysis of surface water quality prediction performance and identi fi cation of key water parameters using different machine learning models based on big data. Water Research, 171, 115454. https://doi.org/10.1016/j.watres.2019.115454
Cheng, M., Lin, Y., & She, H. (2015). Computers & Education Learning through playing Virtual Age : Exploring the interactions among student concept learning , gaming performance , in-game behaviors , and the use of in-game characters. Computers & Education, 86, 18–29. https://doi.org/10.1016/j.compedu.2015.03.007
Dekkers, R., de Boer, R., Gelsomino, L. M., de Goeij, C., Steeman, M., Zhou, Q., Sinclair, S., & Souter, V. (2020). Evaluating theoretical conceptualisations for supply chain and finance integration: A Scottish focus group. International Journal of Production Economics, 220(May 2018), 107451. https://doi.org/10.1016/j.ijpe.2019.07.024
Dian Pertiwi, Ulwan Syafrudin, R. D. (2021). PAUD Lectura: Jurnal Pendidikan Anak Usia Dini, Vol 4, No 2, April 2021. 4(2), 62–69. https://doi.org/10.31849/paud-lectura.v4i02.5875
Dykhuis, K. E., Slowik, L., Ph, D., Bryce, K., Ph, D., Hyde-nolan, M. E., Ph, D., Eshelman, A., Ph, D., Miller-matero, L. R., & Ph, D. (2018). Original Research Article A New Measure of Health Numeracy : Brief Medical Numbers Test ( BMNT ). Psychosomatics. https://doi.org/10.1016/j.psym.2018.07.004
Elisa, D., Marianne, G., Jean-christophe, V., & Mariko, S. (2019). Money illusion, financial literacy and numeracy: experimental evidence. Journal of Economic Psychology, 102211. https://doi.org/10.1016/j.joep.2019.102211
Fang, X., & Yuan, Z. (2019). Engineering Applications of Artificial Intelligence. Engineering Applications of Artificial Intelligence, 85(February), 533–542. https://doi.org/10.1016/j.engappai.2019.07.011
Feng, Y., Gong, D., Zhang, Q., Jiang, S., Zhao, L., & Cui, N. (2019). Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation. Energy Conversion and Management, 198(July), 111780. https://doi.org/10.1016/j.enconman.2019.111780
Gowin, J. L., Ernst, M., Ball, T., May, A. C., Sloan, M. E., Tapert, S. F., & Paulus, M. P. (2019). NeuroImage : Clinical Using neuroimaging to predict relapse in stimulant dependence : A comparison of linear and machine learning models. NeuroImage: Clinical, 21(July 2018), 101676. https://doi.org/10.1016/j.nicl.2019.101676
Hong, J., Vonu, P., Mason, P., & Lido, C. (2020). The role of numeracy and financial literacy skills in the relationship between information and communication technology use and travel behaviour. Travel Behaviour and Society, 21(July), 257–264. https://doi.org/10.1016/j.tbs.2020.07.007
Huang, J., Hales, T. C., Huang, R., Ju, N., Li, Q., & Huang, Y. (2020). Jo ur l P re of. Geomorphology, 107333. https://doi.org/10.1016/j.geomorph.2020.107333
Huang, Y., & Chen, P. (2020). Fake News Detection Using an Ensemble Learning Model Based on Self-adaptive Harmony Search Algorithms Yin-Fu Huang *, Po-Hong Chen. Expert Systems With Applications, 113584. https://doi.org/10.1016/j.eswa.2020.113584
Inés, M., Douglas, H., Xu, C., Molina-rojas, N., & Lefevre, J. (2018). Expanding the Home Numeracy Model to Chilean children: Relations among parental expectations, attitudes, activities, and children’s mathematical outcomes. Early Childhood Research Quarterly. https://doi.org/10.1016/j.ecresq.2018.06.010
Kecama, D. I. (2011). IMPLEMENT ASI MET ODE PEMBELAJARAN CALISTUNG PERMULAAN Y GROUP AISYIAH PLAY T AN K ASURA ARTASURA. 12(2), 126–136.
Kwing, S., May, K., & Mcbride, C. (2020). Journal of Experimental Child Parents ’ characteristics , the home environment , and children ’ s numeracy skills : How are they related in low- to middle-income families in the Philippines ? Journal of Experimental Child Psychology, 192, 104780. https://doi.org/10.1016/j.jecp.2019.104780
Kwon, E. H., & Block, M. E. (2017). Implementing the adapted physical education E-learning program into physical education teacher education program. Research in Developmental Disabilities, 69(May), 18–29. https://doi.org/10.1016/j.ridd.2017.07.001
Laurens, K. R., Islam, F., Kariuki, M., Harris, F., Chilvers, M., Butler, M., Schofield, J., Essery, C., Brinkman, S. A., Carr, V. J., & Green, M. J. (2020). Child Abuse & Neglect Reading and numeracy attainment of children reported to child protection services : A population record linkage study controlling for other adversities. Child Abuse & Neglect, 101(November 2019), 104326. https://doi.org/10.1016/j.chiabu.2019.104326
Li, X., Zhao, Z., & Liu, F. (2020). Latent variable iterative learning model predictive control for multivariable control of batch processes. Journal of Process Control, 94, 1–11. https://doi.org/10.1016/j.jprocont.2020.08.001
Litkowski, E. C., Duncan, R. J., Logan, J. A. R., & Purpura, D. J. (2020). Journal of Experimental Child When do preschoolers learn specific mathematics skills ? Mapping the development of early numeracy knowledge. Journal of Experimental Child Psychology, 195, 104846. https://doi.org/10.1016/j.jecp.2020.104846
Lozano, J. H., & Revuelta, J. (2020). Investigating operation-speci fi c learning e ff ects in the Raven ’ s Advanced Progressive Matrices : A linear logistic test modeling approach. 82(December 2019). https://doi.org/10.1016/j.intell.2020.101468
Miglani, A., & Kumar, N. (2019). Deep learning models for traffic flow prediction in autonomous vehicles : A review , solutions , and challenges. Vehicular Communications, 1, 100184. https://doi.org/10.1016/j.vehcom.2019.100184
Park, B., Oh, S., Lee, J. M., Park, B., Oh, S., Lee, J. M., Park, B., & Oh, S. (2019). ScienceDirect Stochastic Iterative Iterative Learning Learning Model Model Stochastic Iterative Learning Model Predictive Control Stochastic Stochastic Iterative Learning Model Predictive Control based on Stochastic Predictive Control Stochastic Approximation Predictive Control Approximation. IFAC-PapersOnLine, 52(1), 604–609. https://doi.org/10.1016/j.ifacol.2019.06.129
Reilly, R. O., Ramjan, L. M., Fatayer, M., Stunden, A., & Gregory, L. R. (2020). Nurse Education in Practice First year undergraduate nursing students ’ perceptions of the effectiveness of blended learning approaches for nursing numeracy. Nurse Education in Practice, 45(August 2019), 102800. https://doi.org/10.1016/j.nepr.2020.102800
Rohim, D. C. (2021). Konsep Asesmen Kompetensi Minimum Meningkatkan Kemampuan Literasi Numerasi Sekolah Dasar untuk Siswa. 54–62. https://doi.org/10.23917/varidika.v33i1.14993
Senanayake, S., White, N., Graves, N., Healy, H., & Baboolal, K. (2019). Machine learning in predicting graft failure following kidney transplantation : A systematic review of published predictive models. International Journal of Medical Informatics, 130(March), 103957. https://doi.org/10.1016/j.ijmedinf.2019.103957
Sikora, J., Evans, M. D. R., & Kelley, J. (2018). Scholarly culture: How books in adolescence enhance adult literacy, numeracy and technology skills in 31 societies. Social Science Research. https://doi.org/10.1016/j.ssresearch.2018.10.003
Silinskas, G., Di, S., Douglas, H., Xu, C., Lefevre, J., Garckija, R., Gabrialaviciute, I., & Raiziene, S. (2020). Early Childhood Research Quarterly Responsive home numeracy as children progress from kindergarten through Grade 1 à¬. Early Childhood Research Quarterly, 53, 484–495. https://doi.org/10.1016/j.ecresq.2020.06.003
Singaravel, S., Suykens, J., & Geyer, P. (2019). Advanced Engineering Informatics Deep convolutional learning for general early design stage prediction models. Advanced Engineering Informatics, 42(February), 100982. https://doi.org/10.1016/j.aei.2019.100982
Singh, D., Singh, P., & Sisodia, D. S. (2019). Compositional model based on factorial evolution for realizing multi-task learning in bacterial virulent protein prediction. Artificial Intelligence In Medicine, 101(November 2018), 101757. https://doi.org/10.1016/j.artmed.2019.101757
Stern, A., Rosenthal, Y., Dresler, N., & Ashkenazi, D. (2019). Additive manufacturing: An education strategy for engineering students. Additive Manufacturing, 27(April), 503–514. https://doi.org/10.1016/j.addma.2019.04.001
Toller, G., Brown, J., Sollberger, M., Shdo, S. M., Bouvet, L., Sukhanov, P., Seeley, W. W., Miller, B. L., & Rankin, K. P. (2018). Individual differences in socioemotional sensitivity are an index of salience network function. Cortex, 103, 211–223. https://doi.org/10.1016/j.cortex.2018.02.012
Touli, E. H., Radid, M., & Talbi, M. (2011). Teacher-training: Analysis of teachers’ representations about their impact on the teaching of the chemical reaction under the current system. Procedia - Social and Behavioral Sciences, 15, 2122–2131. https://doi.org/10.1016/j.sbspro.2011.04.065
Tvenge, N., Ogorodnyk, O., Østbø, N. P., & Martinsen, K. (2020). Added value of a virtual approach to simulation-based learning in a manufacturing learning factory. Procedia CIRP, 88, 36–41. https://doi.org/10.1016/j.procir.2020.05.007
Webber, S., Carter, M., Smith, W., & Vetere, F. (2017). Interactive technology and human–animal encounters at the zoo. International Journal of Human Computer Studies, 98, 150–168. https://doi.org/10.1016/j.ijhcs.2016.05.003
Zarifa, D., Seward, B., & Milian, R. P. (2019). Location , location , location : Examining the rural-urban skills gap in Canada. Journal of Rural Studies, 72(October), 252–263. https://doi.org/10.1016/j.jrurstud.2019.10.032
Zhu, L., Zhang, C., Zhang, C., Zhang, Z., Nie, X., Zhou, X., Liu, W., & Wang, X. (2019). Forming a new small sample deep learning model to predict total organic carbon content by combining unsupervised learning with semisupervised learning. Applied Soft Computing Journal, 83, 105596. https://doi.org/10.1016/j.asoc.2019.105596
Penulis
Hak cipta berada di tangan penulis
Artikel yang terbit dapat digunakan di bawah lisensi Creative Commons Attribution-NonCommercial 4.0 International License.