Identifikasi Pneumonia pada Balita melalui Citra X-ray Menggunakan Metode Convolutional Neural Network (CNN)
Abstract
Background: Pneumonia is a respiratory infection that can be life-threatening if not properly diagnosed and treated. The diagnosis of pneumonia currently relies on the expertise of pulmonologists to evaluate chest X-ray results. Therefore, there is a need for technology that can assist doctors in analyzing X-ray images quickly and accurately. Methods: This study employs Convolutional Neural Networks (CNN) to classify chest X-ray images into three classes: Normal, Mild Pneumonia, and Severe Pneumonia. Several experiments were conducted by varying the number of epochs, dataset size, image resolution, and the number of hidden layers to achieve accurate identification results. Results: The final testing results showed that using 15 epochs, 5 hidden layers, and a dataset of 5700 images for classification with CNN can achieve a training accuracy of 92.48% and a validation accuracy of 91%. Results from 50 chest X-ray images indicated identical identification accuracy between the readings by doctors and the proposed method, with doctors taking 15 minutes to read and the proposed method taking only 0.2 seconds with an identification accuracy of 100%. Conclusion: This study demonstrates that the proposed method can assist pulmonologists in diagnosing pneumonia with high diagnostic accuracy and short diagnosis time, thereby helping to improve the quality of healthcare services. Recommendations: This study recommends the use of CNN as a method for diagnosing pneumonia in chest X-ray images.
Full text article
References
A. M. Puspitasari, S. Suhartono, and K. Kushartantya, “Sistem Pakar Berbasis Web dengan Metode Probabilitas Klasik untuk Diagnosa Penyakit Tuberkulosis Pada Manusia Dewasa,” J. Masy. Inform., vol. 4, no. 8, pp. 35–43, 2013.
A. Subandi and I. Ariani, “Peningkatan Pengetahuan dan Kemampuan Ibu dalam Penatalaksanaan pada balita Pneumonia dengan Pendekatan MTBS di Puskesmas Cilacap Selatan 1,” J. Pengabdi. Masy. Al-Irsyad, vol. 1, no. 2, pp. 126–133, 2019.
S. MIRHALINA, “[BOOK CHAPTER] PENANGGULANGAN PENYAKIT TIDAK MENULAR DI INDONESIA,” 2023.
R. Adawiyah, “Faktor-faktor Yang Berpengaruh Terhadap Kejadian Pneumonia Pada Balita di Puskesmas Susunan Kota Bandar Lampung Tahun 2012,” J. Kedokt. Yars., vol. 24, no. 1, pp. 51–68, 2016.
K. Kallianos et al., “How far have we come? Artificial intelligence for chest radiograph interpretation,” Clin. Radiol., vol. 74, no. 5, pp. 338–345, 2019.
S. Tammina, “Transfer learning using vgg-16 with deep convolutional neural network for classifying images,” Int. J. Sci. Res. Publ., vol. 9, no. 10, pp. 143–150, 2019.
M. Toğaçar, B. Ergen, Z. Cömert, and F. Özyurt, “A deep feature learning model for pneumonia detection applying a combination of mRMR feature selection and machine learning models,” Irbm, vol. 41, no. 4, pp. 212–222, 2020.
A. G. Taylor, C. Mielke, and J. Mongan, “Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study,” PLoS Med., vol. 15, no. 11, p. e1002697, 2018.
T. K. Khanh Ho and J. Gwak, “Multiple feature integration for classification of thoracic disease in chest radiography,” Appl. Sci., vol. 9, no. 19, p. 4130, 2019.
P. P. Illahi, H. Fauzi, and T. S. Siadari, “Klasifikasi Penyakit Pneumonia Dan Covid-19 Berbasis Citra X-Ray Menggunakan Arsitektur Deep Residual Network,” eProceedings Eng., vol. 9, no. 4, 2022.
I. M. Firdiantika and Y. Jusman, “Pneumonia detection in chest X-ray images using convolutional neural network,” in AIP Conference Proceedings, 2022, vol. 2499, no. 1.
S. A. Khoiriyah, A. Basofi, and A. Fariza, “Convolutional neural network for automatic pneumonia detection in chest radiography,” in 2020 International Electronics Symposium (IES), 2020, pp. 476–480.
R. R. N. M. I. Tobias et al., “CNN-based deep learning model for chest X-ray health classification using tensorflow,” in 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), 2020, pp. 1–6.
E. Kesim, Z. Dokur, and T. Olmez, “X-ray chest image classification by a small-sized convolutional neural network,” in 2019 scientific meeting on electrical-electronics & biomedical engineering and computer science (EBBT), 2019, pp. 1–5.
R. Siddiqi, “Automated pneumonia diagnosis using a customized sequential convolutional neural network,” in Proceedings of the 2019 3rd international conference on deep learning technologies, 2019, pp. 64–70.
S. Hartati, N. Nurhaeni, and D. Gayatri, “Faktor risiko terjadinya pneumonia pada anak balita,” J. Keperawatan Indones., vol. 15, no. 1, pp. 13–20, 2012.
E. Warganegara, “Pneumonia Nosokomial (Hospital-acquired, Ventilator-associated, dan Health Care-associated Penumonia),” J. Kedokt. Univ. Lampung, vol. 1, no. 3, pp. 612–618, 2017.
W. Gazali, H. Soeparno, and J. Ohliati, “Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital,” J. Mat Stat, vol. 12, no. 2, pp. 103–113, 2012.
R. D. Kusumanto and A. N. Tompunu, “pengolahan citra digital untuk mendeteksi obyek menggunakan pengolahan warna model normalisasi RGB,” in Seminar Nasional Teknologi Informasi & Komunikasi Terapan, 2011, vol. 2011, pp. 1–7.
R. Rajakumari and L. Kalaivani, “Breast Cancer Detection and Classification Using Deep CNN Techniques.,” Intell. Autom. Soft Comput., vol. 32, no. 2, 2022.
P. Tiwari et al., “Cnn based multiclass brain tumor detection using medical imaging,” Comput. Intell. Neurosci., vol. 2022, no. 1, p. 1830010, 2022.
A. W. Salehi, P. Baglat, B. B. Sharma, G. Gupta, and A. Upadhya, “A CNN model: earlier diagnosis and classification of Alzheimer disease using MRI,” in 2020 International Conference on Smart Electronics and Communication (ICOSEC), 2020, pp. 156–161.
A. Y. Bequet, L. Rusyadi, and F. Fatimah, “Nilai Contrast to Noise Ratio (CNR) Radiograf Thorax PA antara menggunakan Grid dengan tanpa Menggunakan Grid,” J. Imejing Diagnostik, vol. 6, no. 2, pp. 60–64, 2020.
I. Bakti and M. Firdaus, “Klasifikasi File Gambar Hasil X-Ray Paru-Paru Dengan Arsitektur Convolution Neural Network (CNN),” J. Inf. Technol., vol. 3, no. 1, pp. 26–34.
Authors
Copyright (c) 2024 Indah Kurniawati, Ridho Akbar, Yessie Ardina Kusuma, Izza Fahma Kusumawati

This work is licensed under a Creative Commons Attribution 4.0 International License.