Analisis Skor Literasi Membaca Siswa Indonesia Menggunakan Linier Mixed Models

Vera Maya Santi (1), Syifa Azzahra (2), Dania Siregar (3)
(1) Universitas Negeri Jakarta, Indonesia,
(2) Universitas Negeri Jakarta, Indonesia,
(3) Universitas Negeri Jakarta

Abstract

The linear mixed models is a development of the linear model which includes both fixed and random effects in the model. Random effect in the model is used to model complex data that has a grouping structure. The grouping structure can occur because the same observations are measured repeatedly or each observation is measured only once but these observations have some form of group structure. Students who participate in the Program for International Student Assessment (PISA) are nested in several schools, so the PISA data structure is quite complex and requires a more in-depth analysis. Quantitative studies on PISA, especially in reading literacy, are still rarely done. The purpose of this study is to determine what factors effect the Indonesian student’s PISA reading literacy scores using a linear mixed model approach with school being used as a random effect in the model. The findings of the study are that the factors that affects Indonesian student’s PISA reading literacy scores are the class being taken, gender, mother's highest education, facilities at home, school entry age, student discipline and failed a grade. The result of the estimation of random effect variance which is not equal to zero indicates that there is a random effect from the student’s school on PISA reading literacy scores. Based on model diagnostics and parameter testing, it was concluded that the model obtained is fitted in modeling Indonesian student’s PISA reading literacy scores.

Full text article

Generated from XML file

References

Azrin, K. (2016). Pengaruh Ketersediaan Koleksi Perpustakaan Terhadap Minat Baca Siswa.

Bingham, N. ., & Fry, J. M. (2011). Regression: linear models in statistics. In Choice Reviews Online (Vol. 48, Issue 08). Springer. https://doi.org/10.5860/choice.48-4532

Faraway, J. J. (2016). Extending the Linear Model With R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. In Taylor & Francis Group (Second Edi). Taylor & Francis Group. https://doi.org/10.1198/jasa.2007.s238

Gałecki, A., & Burzykowski, T. (2013). Linear Mixed-Effects Models Using R. In The Journal of Physiology (Vol. 75, Issue 4). Springer Science+Business Media. https://doi.org/10.1113/jphysiol.1932.sp002901

Griebeler, M. (2015). A land without Readers. https://en.qantara.de/node/20097

Kemendikbud, B. (2019). Pendidikan di Indonesia belajar dari hasil PISA 2018. Pusat Penilaian Pendidikan Balitbang KEMENDIKBUD, 021, 1–206. http://repositori.kemdikbud.go.id/id/eprint/16742

McCulloch, C. E., & Searle, S. R. (2001). Generalized, Linear, and Mixed Model. John Wiley & Sons, Inc.

OECD. (2019). Programme for international student assessment (PISA) results from PISA 2018. Oecd, 1–10. https://www.oecd-ilibrary.org/education/pisa-2018-results-volume-iii_bd69f805-en%0Ahttps://www.oecd-ilibrary.org//sites/bd69f805-en/index.html?itemId=/content/component/bd69f805-en#fig86

Pakpahan, R. (2017). Faktor-Faktor Yang Memengaruhi Capaian Literasi Matematika Siswa Indonesia Dalam Pisa 2012. Jurnal Pendidikan Dan Kebudayaan, 1(3), 331. https://doi.org/10.24832/jpnk.v1i3.496

Patria, R. R. P. (2019). Indonesia Reading Literacy Progress: an Insight From Pisa Study. Iceap, 195–211. https://doi.org/10.26499/iceap.v0i0.221

Santi, V. M., Notodiputro, K. A., & Sartono, B. (2019). A Study of Several Variable Selection Methods in Modelling the Mathematics Scores of Indonesian Students in Programme for International Student Assessment (PISA) based on Convex Penalized Likelihood. Journal of Physic AASEC.

Santi, V. M., Notodiputro, K. A., & Sartono, B. (2022). Restricted Maximum Likelihood Estimation For Multivariate Linear Mixed Model In Analyzing Pisa Data For Indonesian Students. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(2), 607–614. https://doi.org/https://doi.org/10.30598/barekengvol16iss2pp607-614

Santi, V. M., Notodiputro, K. A., Sartono, B., & Rahayu, W. (2021). Generalized Linear Mixed Models by penalized Lasso in modelling the scores of Indonesian students. Journal of Physics: Conference Series, 1869(1). https://doi.org/10.1088/1742-6596/1869/1/012140

Schleicher, A. (2019). PISA 2018 Insights and Interpretations. ERIC, 64. https://eric.ed.gov/?id=ED601150

Searle, S. R., Casella, G., & McCulloch, C. E. (2006). Variance Components. John Wiley & Sons, Inc.

Stroup, W. W. (2013). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. In International Statistical Review (Vol. 81, Issue 3). CRC Press. https://doi.org/10.1111/insr.12042_24

Tohir, M. (2019). Hasil PISA Indonesia Tahun 2018 Turun Dibanding Tahun 2015 (Indonesia’s PISA Results in 2018 are Lower than 2015). Open Science Framework, 2, 1–2.

Warsihna, J. (2016). Menulis Dengan Teknologi Informasi Improve Reading and Writing Literacy With Information (TIK). Kwangsan, 4(2), 67–80.

West, B., Welch, K., & Gałecki, A. (2014). Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition. In Linear Mixed Models (Second Edi). Chapman and Hall. https://doi.org/10.1201/b17198-2

Wulandari, S. P., Wildani, Z., Prastuti, M., Aridinanti, L., Retnaningsih, S. M., Ratih, I. D., Kustantin, S., Zullah, V. S., Kurniasari, S. V., & Pradana, A. (2021). Pemodelan Literasi Membaca Siswa Di Daerah Terpencil Menggunakan Regresi Logistik Biner. Jurnal LeECOM (Leverage, Engagement, Empowerment of Community), 3(1), 33–42. https://doi.org/10.37715/leecom.v3i1.1887

Yusuf, S. (2006). Perbandingan Gender Dalam Prestasi Literasi Siswa Indonesia.

Authors

Vera Maya Santi
vmsanti@unj.ac.id (Primary Contact)
Syifa Azzahra
Dania Siregar
Author Biography

Vera Maya Santi, Universitas Negeri Jakarta

Program Studi Statistika
Santi, V. M., Azzahra, S., & Siregar, D. (2022). Analisis Skor Literasi Membaca Siswa Indonesia Menggunakan Linier Mixed Models. MUST: Journal of Mathematics Education, Science and Technology, 7(2), 116–129. https://doi.org/10.30651/must.v7i2.14420

Article Details

Similar Articles

<< < 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.