Pemodelan Nilai Saham Perusahaan Pertambangan di Indonesia Berdasarkan Metode Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Akıncı, M., & Akıncı, G. Y. (2021). Modelling the Volatility Spillovers Among Energy Stock Returns in Developed, Developing and Fragile Economies Using EGARCH Analysis. In Strategic Approaches to Energy Management (pp. 103-125).
Andreas, C., Sediono, S., Ana, E., Suliyanto, S., & Mardianto, M. F. F. (2021). Penerapan Model ARIMAX-GARCH dalam Pemodelan dan Peramalan Volume Transaksi Uang Elektronik di Indonesia. MUST: Journal of Mathematics Education, Science and Technology, 6(2), 241-256.
De Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean absolute percentage error for regression models. Neurocomputing, 192, 38-48.
Khair, U., Fahmi, H., Al Hakim, S., & Rahim, R. (2017). Forecasting error calculation with mean absolute deviation and mean absolute percentage error. In Journal of Physics: Conference Series 930(1), 012002. IOP Publishing.
Maricar M.A, (2019). Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ, J. Sist. Dan Inform., 13(2), 36–45.
Montgomery D. C., Jennings C. L., Kulahci M. (2008). Introduction to Time Series Analysis and Forecasting, New Jersey (US): J Wiley.
Muklis, F. (2016). Perkembangan dan Tantangan Pasar Modal Indonesian, Jurnal Lembaga Keuangan dan Perbankan, 1 (1), 65-75.
Obstfeld, M. (2021). The global capital market reconsidered. Oxford Review of Economic Policy, 37(4), 690-706.
Otoritas Jasa Keuangan. (2021). ojk.go.id. Siaran Pers: Pasar Modal Indonesia Menguat Dorong Pemulihan Ekonomi. https://www.ojk.go.id/id/berita-dan-kegiatan/siaran-pers/Pages/Pasar -Modal - Indonesia - Menguat - Dorong- Pemulihan - Ekonomi.aspx. Diakses pada tanggal 9 Oktober 2022.
Pramugar, R. N., & Sinaga, R. Y. (2021). E-Government in Optimizing Non-Tax Revenue of The Mining Sector in Indonesia. Jaf (Journal of Accounting and Finance), 5(1), 36-44.
Prasetya, L. B., Ispriyanti, D., dan Prahutama, A. (2018). Estimasi Value at Risk Portofolio Saham Menggunakan Metode GARCH-Copula (Studi Kasus: Harga Penutupan Saham Harian Unilever Indonesia dan Kimia Farma Periode 1 Januari 2013-31 Desember 2016). Jurnal Gaussian, 7(4), 397-407.
Rosadi, D. (2014). Analisis Runtun Waktu dan Aplikasinya dengan R, Gadjah Mada University Press, Yogyakarta.
Setiawan, B., Ben Abdallah, M., Fekete-Farkas, M., Nathan, R. J., & Zeman, Z. (2021). GARCH (1, 1) models and analysis of stock market turmoil during COVID-19 outbreak in an emerging and developed economy. Journal of Risk and Financial Management, 14(12), 576.
Tsaym R.S. (2005). Analysis of Financial Time Series. United States: John Wiley & Sns, Inc.
Ulyah, S. M., & Mardianto, M. F. F. (2019). Comparing the Performance of Seasonal ARIMAX Model and Nonparametric Regression Model in Predicting Claim Reserve of Education Insurance. In Journal of Physics: Conference Series (Vol. 1397, No. 1, p. 012074). IOP Publishing.
Wei, W. W. S. (2006). Time series Analysis Univariate and Multivariate Methods, Temple Unversity, USA.
DOI: http://dx.doi.org/10.30651/must.v8i1.17117
Refbacks
- There are currently no refbacks.