Sistem Pendukung Keputusan Kelayakan Penerima Bantuan Sosial di Desa Purwoagung Menggunakan Kombinasi Metode AHP – SAW
Abstract
This study aims to implement and measure the accuracy of the combined Analytical Hierarchy Process (AHP) and Simple Additive Weighting (SAW) methods in making decisions about providing social assistance in Purwoagung Village. This study is a type of applied research that focuses on solving real problems practically by utilizing data obtained from the village government. Data were collected through observation, interviews, questionnaires, and documentation studies to ensure the validity and completeness of the information. In its implementation, data were analyzed through the stages of data mining, criteria weighting using AHP, and alternative ranking using the SAW method. The results showed that of the six criteria used, the head of the family's occupation had the highest weight (0.453), followed by home ownership status, number of dependent children, savings ownership, cooking fuel, and type of house floor. The alternative with the highest preference value of 0.866 was determined as the main priority recipient, while the lowest alternative obtained a value of 0.325. Accuracy testing using a confusion matrix showed an accuracy level of the AHP-SAW method of 92.11%, indicating very good classification performance. These results prove that the AHP-SAW method is effective in determining the eligibility of social assistance recipients objectively, systematically, and efficiently. This study recommends further development with additional methods to improve the accuracy and use of the results of this study by the village in preparing policies for the distribution of social assistance that are more targeted, fair, and transparent.
Keywords: social assistance, community, Purwoagung Village, AHP – SAW method.
Full text article
References
Amalia, H. (2020). Perbandingan Metode Data Mining SVM dan NN Untuk Klasifikasi Penyakit Ginjal Kronis. Jurnal PILAR Nusa Mandiri, 1-6.
Andriyana, V., & Nugroho, Y. (2023). Perbandingan Metode Data Mining untuk Memprediksi Penerima Beasiswa Berdasarkan Prestasi di Sekolah. Jurnal Teknika, 15(1), 61-66.
Anwar, M. (2021). Analisis Zakat Produktif terhadap Indeks Kemiskinan; Nilai Material dan Spiritual Para Mustahik. Mutawasith: Jurnal Hukum Islam, 2(2), 123-140.
Anwar, M., & Rahman, A. (2020). Perlindungan Sosial dan Dampaknya Terhadap Kemiskinan: Studi Kasus di Kabupaten Banyuwangi. Jurnal Ekonomi dan Kebijakan Publik, 5(2), 45-60.
Cahyono, Y., Ma, K., & Herdiansyah, R. (2022). Sistem Pendukung Keputusan Seleksi Penerimaan Bantuan Sosial Berbasis Web dengan Kombinasi Metode Smart dan Topsis. 3(3), 203–213.
Dwi Nurfahrizal, & Suseno. (2023). Pemilihan Supplier dengan Metode AHP dan TOPSIS pada PT XYZ. Jurnal Ilmiah Teknik Mesin, Elektro Dan Komputer, 3(1), 74–86. https://doi.org/10.51903/juritek.v3i1.1177.
Handoko, D. (2022). Sistem Pendukung Keputusan Pemilihan Kapten Tim Futsal Dengan Metode Analytical Hierarchy Process (AHP). Jurnal Ilmiah Informatika Dan Ilmu Komputer (JIMA-ILKOM), 1(2), 77–86. https://doi.org/10.58602/jima-ilkom.v1i2.11.
Kemala, G. Y., Wulandari, I. A., & Ridhawati, E. (2020). Analisis Kebutuhan Sistem Pendukung Keputusan Kenaikan Jabatan pada BPR Inti Dana Sentosa Menggunakan Metode Analytic Hierarchy Process (AHP). Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan), 3(2), 63–69. https://doi.org/10.47970/siskom-kb.v3i2.148.
Kenneth Yosua Palilingan. (2020). Multi Criteria Decision Making Using TOPSISMethod For Choosing Mate. Jurnal Teknik Informatika, 15(4), 283–283. https://ejournal.unsrat.ac.id/v3/index.php/informatika/article/view/32603/30852.
Kristiyanti, D. A., & Sayoeti, N. (2022). Pemilihan Karyawan Terbaik Menggunakan Metode Simple Additive Weighting Berbasis Sistem Pendukung Keputusan. Jurnal Informasi Dan Teknologi, 9(1), 103–107. https://doi.org/10.37034/jidt.v4i2.196.
Authors
Copyright (c) 2025 Sandi Tian Ari Kusuma, I Gusti Nyoman Yudi Hartawan, S.Si.,M. Sc., Prof. Drs. Sariyasa,M.sc.,ph.D.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work