ANALYZING READING LITERACY SCORE OF INDONESIAN STUDENTS USING LINEAR MIXED MODELS
Abstrak
The linear mixed models is a development of the linear model which includes both fixed and random effects in the model. Random effect in the model is used to model complex data that has a grouping structure. The grouping structure can occur because the same observations are measured repeatedly or each observation is measured only once but these observations have some form of group structure. Students who participate in the Program for International Student Assessment (PISA) are nested in several schools, so the PISA data structure is quite complex and requires a more in-depth analysis. Quantitative studies on PISA, especially in reading literacy, are still rarely done. The purpose of this study is to determine what factors effect the Indonesian student’s PISA reading literacy scores using a linear mixed model approach with school being used as a random effect in the model. The findings of the study are that the factors that affects Indonesian student’s PISA reading literacy scores are the class being taken, gender, mother's highest education, facilities at home, school entry age, student discipline and failed a grade. The result of the estimation of random effect variance which is not equal to zero indicates that there is a random effect from the student’s school on PISA reading literacy scores. Based on model diagnostics and parameter testing, it was concluded that the model obtained is fitted in modeling Indonesian student’s PISA reading literacy scores.
Artikel teks lengkap
Referensi
Azrin, K. (2016). Pengaruh Ketersediaan Koleksi Perpustakaan Terhadap Minat Baca Siswa.
Bingham, N. ., & Fry, J. M. (2011). Regression: linear models in statistics. In Choice Reviews Online (Vol. 48, Issue 08). Springer. https://doi.org/10.5860/choice.48-4532
Faraway, J. J. (2016). Extending the Linear Model With R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. In Taylor & Francis Group (Second Edi). Taylor & Francis Group. https://doi.org/10.1198/jasa.2007.s238
Gałecki, A., & Burzykowski, T. (2013). Linear Mixed-Effects Models Using R. In The Journal of Physiology (Vol. 75, Issue 4). Springer Science+Business Media. https://doi.org/10.1113/jphysiol.1932.sp002901
Griebeler, M. (2015). A land without Readers. https://en.qantara.de/node/20097
Kemendikbud, B. (2019). Pendidikan di Indonesia belajar dari hasil PISA 2018. Pusat Penilaian Pendidikan Balitbang KEMENDIKBUD, 021, 1–206. http://repositori.kemdikbud.go.id/id/eprint/16742
McCulloch, C. E., & Searle, S. R. (2001). Generalized, Linear, and Mixed Model. John Wiley & Sons, Inc.
OECD. (2019). Programme for international student assessment (PISA) results from PISA 2018. Oecd, 1–10. https://www.oecd-ilibrary.org/education/pisa-2018-results-volume-iii_bd69f805-en%0Ahttps://www.oecd-ilibrary.org//sites/bd69f805-en/index.html?itemId=/content/component/bd69f805-en#fig86
Pakpahan, R. (2017). Faktor-Faktor Yang Memengaruhi Capaian Literasi Matematika Siswa Indonesia Dalam Pisa 2012. Jurnal Pendidikan Dan Kebudayaan, 1(3), 331. https://doi.org/10.24832/jpnk.v1i3.496
Patria, R. R. P. (2019). Indonesia Reading Literacy Progress: an Insight From Pisa Study. Iceap, 195–211. https://doi.org/10.26499/iceap.v0i0.221
Santi, V. M., Notodiputro, K. A., & Sartono, B. (2019). A Study of Several Variable Selection Methods in Modelling the Mathematics Scores of Indonesian Students in Programme for International Student Assessment (PISA) based on Convex Penalized Likelihood. Journal of Physic AASEC.
Santi, V. M., Notodiputro, K. A., & Sartono, B. (2022). Restricted Maximum Likelihood Estimation For Multivariate Linear Mixed Model In Analyzing Pisa Data For Indonesian Students. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(2), 607–614. https://doi.org/https://doi.org/10.30598/barekengvol16iss2pp607-614
Santi, V. M., Notodiputro, K. A., Sartono, B., & Rahayu, W. (2021). Generalized Linear Mixed Models by penalized Lasso in modelling the scores of Indonesian students. Journal of Physics: Conference Series, 1869(1). https://doi.org/10.1088/1742-6596/1869/1/012140
Schleicher, A. (2019). PISA 2018 Insights and Interpretations. ERIC, 64. https://eric.ed.gov/?id=ED601150
Searle, S. R., Casella, G., & McCulloch, C. E. (2006). Variance Components. John Wiley & Sons, Inc.
Stroup, W. W. (2013). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. In International Statistical Review (Vol. 81, Issue 3). CRC Press. https://doi.org/10.1111/insr.12042_24
Tohir, M. (2019). Hasil PISA Indonesia Tahun 2018 Turun Dibanding Tahun 2015 (Indonesia’s PISA Results in 2018 are Lower than 2015). Open Science Framework, 2, 1–2.
Warsihna, J. (2016). Menulis Dengan Teknologi Informasi Improve Reading and Writing Literacy With Information (TIK). Kwangsan, 4(2), 67–80.
West, B., Welch, K., & Gałecki, A. (2014). Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition. In Linear Mixed Models (Second Edi). Chapman and Hall. https://doi.org/10.1201/b17198-2
Wulandari, S. P., Wildani, Z., Prastuti, M., Aridinanti, L., Retnaningsih, S. M., Ratih, I. D., Kustantin, S., Zullah, V. S., Kurniasari, S. V., & Pradana, A. (2021). Pemodelan Literasi Membaca Siswa Di Daerah Terpencil Menggunakan Regresi Logistik Biner. Jurnal LeECOM (Leverage, Engagement, Empowerment of Community), 3(1), 33–42. https://doi.org/10.37715/leecom.v3i1.1887
Yusuf, S. (2006). Perbandingan Gender Dalam Prestasi Literasi Siswa Indonesia.
Penulis
Penulis yang menerbitkan artikel di Jurnal MUST menyetujui persyaratan berikut:
Penulis memiliki hak cipta dan memberikan hak publikasi pertama kepada Jurnal MUST dengan karya yang secara simultan dilisensikan di bawah Creative Commons Attribution-NonCommercial 4.0 International License yang memungkinkan orang lain untuk berbagi karya dengan pengakuan kepengarangan karya dan publikasi awal dalam Jurnal MUST.
Penulis dapat mengadakan perjanjian kontrak tambahan yang terpisah untuk distribusi non-eksklusif versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di Jurnal MUST.
Penulis diizinkan dan didorong untuk memposting pekerjaan mereka secara online (misal dalam repositori institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena dapat menyebabkan pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan.