Aplikasi Fuzzy Logic Untuk Pengambilan Keputusan Pembelian Kendaraan Mobil Menggunakan Metode Mamdani
Abstract
Vehicles have now become an essential basic need for society. Cars are one of the transportation tools that can be chosen for activities because they can accommodate more than one passenger and offer comfort while driving, eliminating concerns about bad weather during outdoor activities. When purchasing a car, consumers are faced with numerous criteria that influence the selection of the car they want, which makes it difficult for consumers to choose the right car. Several car specifications that consumers consider include the car's weight, passenger capacity, engine size, maximum power, and price. This study discusses the process of recommending the most suitable and needed cars for consumers. By using the fuzzy Tahani method, the processed car data will generate outputs in the form of recommended cars for consumers. This research is expected to assist prospective car buyers in determining the car that best matches their chosen criteria.
Full text article
References
Anggraeni, R., Indarto, W., & Kusumadewi, S. (2004). Sistem Pencarian Kriteria Kelulusan Menggunakan Metode Fuzzy Tahani: Kasus Pada Fakultas Teknologi Industri Universitas Islam Indonesia. Media Informatika, 2(2).
D Utama, D. N., & Taryana, U. (2019). Fuzzy logic for simply prioritizing information in academic information system. International Journal of Mechanical Engineering and Technology, 10(2), 1594-1602.
Eliyani, E., Pujianto, U., & Rosyadi, D. (2009). Decision support system untuk pembelian mobil menggunakan fuzzy database model tahani. In Seminar Nasional Aplikasi Teknologi Informasi (SNATI).
Hafsah, H., Rustamaji, H. C., & Inayati, Y. (2008). Sistem pendukung keputusan pemilihan jurusan di SMU dengan logika fuzzy. Seminar Nasional Informatika, 213-218.
Jayanti, S., & Hartati, S. (2012). Sistem Pendukung Keputusan Seleksi Anggota Paduan Suara Dewasa Menggunakan Metode Fuzzy Mamdani. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 6(1).
Kadarsah, S. & Ramdhani, M. A. (1998). Sistem pendukung keputusan. Bandung: Remaja Rosda Karya.
Klir, G. & Yuang, B. (1996). Fuzzy Sets And Fuzzy Logic. Upper Saddle River, Nj 07458: Prentice Hall International Inc.
Kusumadewi, S. & Purnomo, H. (2010). Aplikasi logika fuzzy untuk pendukung keputusan edisi 2. Yogyakarta: Graha Ilmu.
Kusumadewi, S. (2002). Analisis dan desain sistem fuzzy menggunakan toolbox matlab. Yogyakarta: Graha Ilmu.
Kusumadewi, S., Hartati, S., Harjoko, A., & W, Retantyo. (2006). Fuzzy multiattributi decision making (fuzzy madm). Yogyakarta: Penerbit Graha Ilmu.
Meilanitasari, P. (2010). Prediksi Cuaca Menggunakan Logika Fuzzy untuk Kelayakan Pelayaran di Tanjung Perak Surabaya.
Nakandala, D., Samaranayake, P., & Lau, H. C. (2013). A fuzzy-based decision support model for monitoring on-time delivery performance: A textile industry case study. European journal of operational research, 225(3), 507-517.
Nelson. (2004). Introduction to fuzzy control. University Of South Florida
Pami, S. (2017). Sistem pendukung keputusan pemilihan karyawan terbaik dengan metode promethee (Studi kasus: Pt. Karya Abadi Mandiri). Pelita Informatika: Informasi dan Informatika, 6(1), 125-128.
Permatasari, A., & Sarwo, S. (2010). Sistem pengambilan keputusan pembelian rumah dengan menggunakan fuzzy. In Makalah Seminar Tugas Akhir Teknik Informatika Institud Teknologi Surabaya.
Utama, D. N. (2017). Sistem penunjang keputusan: teori, filosofi, dan implementasi. Yogyakarta: Garudhawaca.
Utama, D. N., Ariyadi, R., Hadi, I., Seputra, M. R., & Setiawan, Y. (2019, November). Fuzzy-DSM for Evaluating Waste’s Hazardousness. In 2019 International Conference on ICT for Smart Society (ICISS) (Vol. 7, pp. 1-6). IEEE.
Utama, D.N., Taufan, A.Z., Hartzani, A.G., Haidi, H., Lubis, Y.R., & Sardjono, W. (2020). A Fuzzy Decision Support Model for Cropland Recommendation of Food Cropping in Indonesia. Journal of Computer Science, 16, 518-531.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
Zimmerman, H. J. (1991). Fuzzy set theory and its applications (2nd edition). Kluwer Academic Publishers.
Authors
Copyright (c) 2025 Nina Andriani, Gunawan, Yosua Tumanggor, Firza Eka Febrianto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work