Analysis of Twitter User Sentiments on Independent Curriculum Indonesia

Fahmi Cholid (1), Suparman (2), Ngatma’in (3), Insani Wahyu Mubarok (4)
(1) Universitas Ahmad Dahlan, Indonesia,
(2) Department of Magister Mathematics Education, Faculty of Teacher Training and Education, Universitas Ahmad Dahlan, Yogyakarta, Indonesia, Indonesia,
(3) Department of Bachelor of Education in Indonesian Language and Literature, Faculty of Teacher Training and Education, Universitas Muhammadiyah Surabaya, Indonesia,
(4) Department of Bachelor of Education in Indonesian Language and Literature, Faculty of Teacher Training and Education, Universitas Muhammadiyah Surabaya, Indonesia

Abstract

Education is a very important aspect in various lives, this cannot be separated from the magnitude of the role and positive impact caused by the advancement of an education system. The world of education is an effort to improve the quality of human resources in terms of thought and expertise. Education is the main key for a country to excel in global competition. Education is always related to the curriculum. The curriculum is a tool used to achieve educational goals so that it can be said that the curriculum is a reference in the process of organizing education in Indonesia. The Indonesian education curriculum has been changed or revised at least 10 times, namely in 1952, 1964, 1968, 1975, 1984, 1994, 2004, 2006, 2013. The latest curriculum in Indonesia, the independent curriculum is a time when teachers and students can or have freedom in thinking and also free in the burden of thought so that they can develop their educational potential. This research aims to classify the sentiment of Twitter users towards government policies regarding the independent curriculum into positive sentiment and negative sentiment. The method used by the Naïve Bayes Classifier (NBC) and Support Vector Machines (SVM). The Result shows that the percentage of positive sentiment is 47% or 451 tweets while the negative sentiment is 53% or 264 tweets.

Full text article

Generated from XML file

References

Abidah, A., Hidaayatullaah, H. N., Simamora, R. M., Fehabutar, D., & Mutakinati, L. (2020). The Impact of Covid-19 to Indonesian Education and Its Relation to the Philosophy of “Merdeka Belajar.” Studies in Philosophy of Science and Education (SiPoSE), 1(1), 38–49. http://scie-journal.com/index.php/SiPoSE

Affandi, Y., & Sugiharti, E. (2023). Sentiment Analysis of student on Online Lectured During Covid-19 Pandemic Using K-Means and Naïve Bayes Classifier. Journal of Advances in Information Systems and Technology, 5(1), 38–49. https://doi.org/10.15294/jaist.v5i1.64903

Andriani, W. (2020). Pentingnya Perkembangan Pembaharuan Kurikulum dan Permasalahannya. Universitas Lambung Mangkurat, 1–12. https://doi.org/10.35542/osf.io/rkjsg

Ariadi, D., & Fithriasari, K. (2015). Klasifikasi Berita Indonesia Menggunakan Metode Naive Bayesian Classification dan Support Vector Machine dengan Confix Stripping Stemmer. In JURNAL SAINS DAN SENI ITS Vol. 4, No.2 (Vol. 4, Issue 2).

Ariadi D & Fithriasari K. (2015). Klasifikasi Berita Indonesia Menggunakan Metode Naive Bayesian Classification dan Support Vector Machine dengan Confix Stripping Stemmer (Vol. 4, Issue 2).

Astuti, 2016. (2016). ストレス反応の主成分分析を試みて- 田甫久美子View metadata, citation and similar papers at core.ac.uk. PENGARUH PENGGUNAAN PASTA LABU KUNING (Cucurbita Moschata) UNTUK SUBSTITUSI TEPUNG TERIGU DENGAN PENAMBAHAN TEPUNG ANGKAK DALAM PEMBUATAN MIE KERING, 15(1), 165–175.

Chai, C. P. (2023). Comparison of text preprocessing methods. Natural Language Engineering, 29(3), 509–553. https://doi.org/10.1017/S1351324922000213

Djamaludin, M. A., Triayudi, A., & Mardiani, E. (2022). Analisis Sentimen Tweet KRI Nanggala 402 di Twitter menggunakan Metode Naïve Bayes Classifier. Jurnal Teknologi Informasi Dan Komunikasi), 6(2), 2022. https://doi.org/10.35870/jti

Feinerer, I., Hornik, K., & Meyer, D. (2008). Journal of Statistical Software Text Mining Infrastructure in R. http://www.jstatsoft.org/

Firdaus, A., & Firdaus, W. I. (2021). Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan). In Jurnal JUPITER (Vol. 13, Issue 1).

Gyta, D., Harahap, S., Sormin, S. A., Fitrianti, H., & Rafi, M. (2023). Implementation of Merdeka Curriculum Using Learning Management System (LMS). https://doi.org/10.55299/ijere.v2i1.439

Hamami, T. (2021). National Curriculum Reforms in Indonesia: Moving from Partial to Holistic Curriculum. In Turkish Online Journal of Qualitative Inquiry (TOJQI) (Vol. 12, Issue 8). https://orcid.org/0000-0002-1490-8883

Hasri, C. F., & Alita, D. (2022). PENERAPAN METODE NAÏVE BAYES CLASSIFIER DAN SUPPORT VECTOR MACHINE PADA ANALISIS SENTIMEN TERHADAP DAMPAK VIRUS CORONA DI TWITTER. Jurnal Informatika Dan Rekayasa Perangkat Lunak (JATIKA), 3(2), 145–160. http://jim.teknokrat.ac.id/index.php/informatika

Intiana, S. R. H., Prihartini, A. A., Handayani, F., Mar’i, M., & Faridi, K. (2023). Independent Curriculum and the Indonesian Language Education throughout the Era of Society 5.0: A Literature Review. AL-ISHLAH: Jurnal Pendidikan, 15(1), 911–921. https://doi.org/10.35445/alishlah.v15i1.3140

Iramdan., L. M. (2019). Sejarah Kurikulum di Indonesia. Https://Jurnal.Peneliti.Net/Index.Php/JIWP/Article/View/98/78, 5(2).

Rachimawan, A. F. (2016). ADS Filtering Menggunakan Jaringansyaraf Tiruan Perceptron, Naïve Bayes Classifier Dan Regresi Logistik. 5(1), 98. http://repository.its.ac.id/51346/

Rahayu, R., Iskandar, S., & Abidin, Y. (2022). Inovasi Pembelajaran Abad 21 dan Penerapannya di Indonesia. Jurnal Basicedu, 6(2), 2099–2104. https://doi.org/10.31004/basicedu.v6i2.2082

Restiana, S., Agustina, R., Rahman, J., Ananda, R., & Witarsa, R. (2022). Standar Proses Pendidikan Nasional: Implementasi dan Analisis terhadap Komponen Guru Matematika di SD Muhammadiyah 027 Batubelah. MASALIQ, 2(4), 489–504. https://doi.org/10.58578/masaliq.v2i4.444

Roji, M. F. F., & Irhamah, I. (2019). Topic Discovery pada Dokumen Abstrak Jurnal Penelitian di Science Direct Menggunakan Association Rule. Inferensi, 2(2), 97. https://doi.org/10.12962/j27213862.v2i2.6824

Santoso, V. I., Virginia, G., & Lukito, Y. (2017). Penerapan Sentiment Analysis Pada Hasil Evaluasi Dosen Dengan Metode Support Vector Machine. Jurnal Transformatika, 14(2), 72. https://doi.org/10.26623/transformatika.v14i2.439

Saptono, R., Sulistyo, M. E., & Trihabsari, N. S. (2017). Text Classification Using Naive Bayes Updateable Algorithm in Sbmptn Test Questions. Telematika, 13(2), 123. https://doi.org/10.31315/telematika.v13i2.1728

Saputra, I., Halomoan, J. A., Raharjo, A. B., & Syavira, C. R. A. (2020). Sentiment Analysis on Twitter of Psbb Effect Using Machine Learning. Jurnal Techno Nusa Mandiri, 17(2), 143–150. https://doi.org/10.33480/techno.v17i2.1635

Shiri, A. (2004). Introduction to Modern Information Retrieval (2nd edition). Library Review, 53(9), 462–463. https://doi.org/10.1108/00242530410565256

Voni Nurhidayati, F. R. M. S. (2022). VONI NURHIDAYATI, DKK 707.

Yaelasari, M., & Yuni Astuti, V. (2022). Implementasi Kurikulum Merdeka Pada Cara Belajar Siswa Untuk Semua Mata Pelajaran (Studi Kasus Pembelajaran Tatap Muka di SMK INFOKOM Bogor). Jurnal Pendidikan Indonesia, 3(7), 584–591. https://doi.org/10.36418/japendi.v3i7.1041

Zulfa Izza, A., & Susilawati, S. (n.d.). STUDI LITERATUR: PROBLEMATIKA EVALUASI PEMBELAJARAN DALAM MENCAPAI TUJUAN PENDIDIKAN DI ERA MERDEKA BELAJAR. https://proceeding.unikal.ac.id/index.php/kip

Authors

Fahmi Cholid
fahmicholid@gmail.com (Primary Contact)
Suparman
Ngatma’in
Insani Wahyu Mubarok

Article Details

Similar Articles

You may also start an advanced similarity search for this article.

No Related Submission Found