Enhancing Working Capital Financing Forecasting In Indonesian Islamic Banks: ARIMA Model Insights

Authors

  • Asmen Junaidi Firman Universitas Airlangga
  • Intan Diane Binangkit Universitas Muhammadiyah Riau

DOI:

https://doi.org/10.30651/stb.v5i2.28401

Keywords:

Working Capital Financing, Islamic Bank, ARIMA, Time Series Forecasting, Decision Support System

Abstract

This study aims to forecast working capital financing for Islamic Commercial Banks (BUS) and Sharia Business Units (UUS) in Indonesia using the ARIMA model as a basis for strategic decision-making. The research object is the total working capital financing of BUS and UUS based on monthly data from January 2017 to March 2025. The research stages include descriptive statistical analysis, stationarity testing with Augmented Dickey-Fuller, identification of ACF/PACF patterns, parameter estimation and significance testing, residual validation, and selection of the best model based on AIC, SBC, and MSE criteria. The analysis results show the ARIMA(8,1,7) model as optimal with AIC 18.6304 and MSE 6,792,148, while residuals meet white noise and normality assumptions. The 12-month forecast (April 2025–March 2026) indicates an increasing financing trend from Rp130.3 trillion to Rp148.98 trillion, despite moderate fluctuations in some months. The discussion confirms that ARIMA captures historical dynamics and external volatility, enabling forecast integration into decision systems for fund allocation optimization and liquidity risk mitigation. In conclusion, ARIMA(8,1,7) proves accurate for predicting BUS-UUS working capital financing and supports Islamic banking management strategies in Indonesia.

References

Abedifar, P., Molyneux, P., & Tarazi, A. (2013). Risk in Islamic Banking. Review of Finance, 17(6), 2035–2096.

Ahmed, H. (2011). Maqasid al-Shari’ah and Islamic Financial Products: A Framework for Assessment. ISRA International Journal of Islamic Finance, 3(1), 149–160.

Arumugam, V., & Natarajan, V. (2023). Time Series Modeling and Forecasting Using Autoregressive Integrated Moving Average and Seasonal Autoregressive Integrated Moving Average Models. Instrumentation Mesure Métrologie, 22(4), 161–168.

Bank Syariah Indonesia. (2024). Laporan Tahunan 2024.

Bello-Angulo, D., Mantilla-Duarte, C., Montes-Paez, E., & Guerrero-Martin, C. (2022). Box–Jenkins Methodology Application to Improve Crude Oil Production Forecasting: Case Study in a Colombian Field. Arabian Journal for Science and Engineering, 47(9), 11269–11278. https://doi.org/10.1007/s13369-021-05997-7

Čihák, M., & Hesse, H. (2010). Islamic Banks and Financial Stability: An Empirical Analysis. Journal of Financial Services Research, 38(2), 95–113.

Dusuki, A. W. (2008). Understanding the objectives of Islamic banking: a survey of stakeholders’ perspectives. International Journal of Islamic and Middle Eastern Finance and Management, 1(2), 132–148.

Fachri, S., Sulistiana, I., Nurhayadi, W., & Wahyuni, I. (2023). The Effect Of Working Capital Financing, MSME Investment Financing And Non-Performing Financing On Bank Profit Growth General Sharia. Jurnal Ekonomi, 12(03), 2023. http://ejournal.seaninstitute.or.id/index.php/Ekonomi

Haniffa, R., & Hudaib, M. (2010). Islamic finance: from sacred intentions to secular goals? Journal of Islamic Accounting and Business Research, 1(2), 85–91.

Hassan, M. K., & Aliyub, S. (2018). A contemporary survey of islamic banking literature. Journal of Financial Stability, 34, 12–43. https://doi.org/https://doi.org/10.1016/j.jfs.2017.11.006

Hassan, M. K., & Lewis, M. K. (2007). Handbook of Islamic Banking. Edward Elgar Publishing Limited.

Huruta, A. D. (2024). Predicting the unemployment rate using autoregressive integrated moving average. Cogent Business and Management, 11(1). https://doi.org/10.1080/23311975.2023.2293305

Ilyas, R. (2015). Konsep pembiayaan dalam perbankan syari’ah. Jurnal Penelitian (P3M STAIN Kudus), 9(1).

iTrade CGS International. (2025, May 2). Laba BSI Triwulan I 2025 Tumbuh Double Digit.

Khan, F. (2010). How ‘Islamic’ is Islamic Banking? Journal of Economic Behavior & Organization, 76(3), 805–820.

Khan, T., & Ahmed, H. (2001). Risk Management: An Analysis of Issues in Islamic Financial Industry (Occasional Papers). Occasional Paper The Islamic Research and Teaching Institute (IRTI), 91.

Otoritas Jasa Keuangan. (2024). Statistik Perbankan Syariah.

Republik Indonesia. (2008). Undang-undang Republik Indonesia No. 21 Tahun 2008 tentang Perbankan Syariah.

Rosyidah, & Sukmana, R. (2018). Aplikasi Metode Autoregressive Integrated Moving Average (Arima) Pada Peramalan Stabilitas Bank Syariah Di Indonesia. Jurnal Ekonomi Syariah Teori Dan Terapan, 5(3), 200–215.

Syarif, A. (2020). Forecasting the Development of Islamic Bank in Indonesia: Adopting ARIMA Model. JTAM (Jurnal Teori Dan Aplikasi Matematika), 4(2), 190. https://doi.org/10.31764/jtam.v4i2.2790

Tiao, G. C. (2015). Time Series: ARIMA Methods. In International Encyclopedia of the Social & Behavioral Sciences (Second Edition, Vol. 96, pp. 316–321).

Wagner, B., & Cleland, K. (2023). Using autoregressive integrated moving average models for time series analysis of observational data. E-BMJ, 383.

Wati, R., & Fasa, M. I. (2024). Manajemen Risiko Likuiditas : Jaminan Keberlanjutan dan Ketahanan Bank Syariah di Era Krisis Moneter. Jurnal Manajemen, 3(4).

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. In Neurocomputing (Vol. 50). www.elsevier.com/locate/neucom

Downloads

Published

2025-11-17