Tandem peptide lipid CRISPR-Cas9 complex combating APP and APOE4 gene abnormality in Alzheimer's disease

Ilham Rahmanto (1), Maulana Bagus Adi Cahyono (2), Husnul Khatimah (3), Rahmi Nugraningrum (4), Pionera Seconda Giyanti Putri (5), Nurul Zulfa Sahiruddin (6), Nabila Rahmaniah (7), Pradana Zaky Romadhon (8)
(1) ,
(2) , Indonesia,
(3) , Indonesia,
(4) , Indonesia,
(5) , Indonesia,
(6) , Indonesia,
(7) , Indonesia,
(8) , Indonesia

Abstract

Alzheimer's attacks 24 million global population and dominates 60-80% of existing cases of dementia. It causes the accumulation of beta-amyloid (Aβ) plaques in the hippocampus and entorhinal cortex, resulting in decreased mass from the brain. Recent studies have shown that the manifestation of this disease is due to an overaccumulation of abnormal Aβ protein due to abnormalities in the APP and APOE4 genes. Point mutations in the APP gene will create the toxic form of Aβ protein, namely Aβ42, and the toxic APOE4 gene will accelerate the onset of Aβ42 deposition and pro-inflammatory activity that exacerbates the degenerative process of the brain. Gene editing as a potential definitive therapy was recently a concern by researchers. CRISPR-Cas9 repairs the APP gene and substitutes the APOE4 gene with APOE3 by modifying the gene's DNA sequence. Nano complex CRISPR-Cas9 tandem peptide lipid is a model for clinicians to target brain nerve cells. In vivo research on an Alzheimer's mouse model proved the potential of nano-complex-based peptides as carriers of CRISPR-Cas9 in brain nerve cells. This engineering technology offers satisfactory results with high precision, minimal side effects, and a relatively low price for long-term therapeutic effects and even a lifetime.

Full text article

Generated from XML file

References

Barman, N. C., Khan, N. M., Islam, M., Nain, Z., Roy, R. K., Haque, A., & Barman, S. K. (2020). CRISPR-Cas9: A Promising Genome Editing Therapeutic Tool for Alzheimer's Disease—A Narrative Review. Neurology and Therapy, 9(2), 419–434. https://doi.org/10.1007/s40120-020-00218-z

Boettcher, M., & McManus, M. T. (2015). Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Molecular Cell, 58(4), 575–585. https://doi.org/10.1016/j.molcel.2015.04.028

Breijyeh, Z., & Karaman, R. (2020). Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules, 25(24), 5789. https://doi.org/10.3390/molecules25245789

D’Argenio, V., & Sarnataro, D. (2020). New Insights into the Molecular Bases of Familial Alzheimer's Disease. Journal of Personalized Medicine, 10(2), 26. https://doi.org/10.3390/jpm10020026

De-Paula, V. J., Radanovic, M., Diniz, B. S., & Forlenza, O. V. (2012). Alzheimer's disease (pp. 329–352). https://doi.org/10.1007/978-94-007-5416-4_14

Dubois, B., Hampel, H., Feldman, H. H., Scheltens, P., Aisen, P., Andrieu, S., Bakardjian, H., Benali, H., Bertram, L., Blennow, K., Broich, K., Cavedo, E., Crutch, S., Dartigues, J., Duyckaerts, C., Epelbaum, S., Frisoni, G. B., Gauthier, S., Genthon, R., … Jack, C. R. (2016). Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimer's & Dementia, 12(3), 292–323. https://doi.org/10.1016/j.jalz.2016.02.002

Erkkinen, M. G., Kim, M.-O., & Geschwind, M. D. (2018). Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harbor Perspectives in Biology, 10(4), a033118. https://doi.org/10.1101/cshperspect.a033118

Gale, S. A., Acar, D., & Daffner, K. R. (2018). Dementia. The American Journal of Medicine, 131(10), 1161–1169. https://doi.org/10.1016/j.amjmed.2018.01.022

Giau, V., Senanarong, V., Bagyinszky, E., An, S., & Kim, S. (2019). Analysis of 50 Neurodegenerative Genes in Clinically Diagnosed Early-Onset Alzheimer's Disease. International Journal of Molecular Sciences, 20(6), 1514. https://doi.org/10.3390/ijms20061514

Giau, V. Van, Bagyinszky, E., Youn, Y. C., An, S. S. A., & Kim, S. (2019). APP, PSEN1, and PSEN2 Mutations in Asian Patients with Early-Onset Alzheimer Disease. International Journal of Molecular Sciences, 20(19), 4757. https://doi.org/10.3390/ijms20194757

Giau, V. Van, Lee, H., Shim, K. H., Bagyinszky, E., & An, S. S. A. (2018). Genome-editing applications of CRISPR–Cas9 to promote in vitro studies of Alzheimer’s disease. Clinical Interventions in Aging, Volume 13, 221–233. https://doi.org/10.2147/CIA.S155145

Gulisano, W., Maugeri, D., Baltrons, M. A., Fà, M., Amato, A., Palmeri, A., D’Adamio, L., Grassi, C., Devanand, D. P., Honig, L. S., Puzzo, D., & Arancio, O. (2018). Role of Amyloid-β and Tau Proteins in Alzheimer's Disease: Confuting the Amyloid Cascade. Journal of Alzheimer's Disease, 64(s1), S611–S631. https://doi.org/10.3233/JAD-179935

György, B., Lööv, C., Zaborowski, M. P., Takeda, S., Kleinstiver, B. P., Commins, C., Kastanenka, K., Mu, D., Volak, A., Giedraitis, V., Lannfelt, L., Maguire, C. A., Joung, J. K., Hyman, B. T., Breakefield, X. O., & Ingelsson, M. (2018). CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease. Molecular Therapy - Nucleic Acids, 11, 429–440. https://doi.org/10.1016/j.omtn.2018.03.007

Hanafy, A. S., Schoch, S., & Lamprecht, A. (2020). CRISPR/Cas9 Delivery Potentials in Alzheimer's Disease Management: A Mini Review. Pharmaceutics, 12(9), 801. https://doi.org/10.3390/pharmaceutics12090801

Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., & Bohr, V. A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology, 15(10), 565–581. https://doi.org/10.1038/s41582-019-0244-7

Hu, Y.-S., Xin, J., Hu, Y., Zhang, L., & Wang, J. (2017). Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach. Alzheimer’s Research & Therapy, 9(1), 29. https://doi.org/10.1186/s13195-017-0252-z

Irfannuddin. (2018). Karakteristik Biomolekuler Mutasi Amyloid Precursor Protein sebagai Penyebab Penyakit Alzheimer yang Dianalisis melalui Media Bioinformatika. Sriwijaya Journal of Medicine, 1(1).

Jain, P. K., Lo, J. H., Rananaware, S., Downing, M., Panda, A., Tai, M., Raghavan, S., Fleming, H. E., & Bhatia, S. N. (2019). Non-viral delivery of CRISPR/Cas9 complex using CRISPR-GPS nanocomplexes. Nanoscale, 11(44), 21317–21323. https://doi.org/10.1039/C9NR01786K

Knight, R., Khondoker, M., Magill, N., Stewart, R., & Landau, S. (2018). A Systematic Review and Meta-Analysis of the Effectiveness of Acetylcholinesterase Inhibitors and Memantine in Treating the Cognitive Symptoms of Dementia. Dementia and Geriatric Cognitive Disorders, 45(3–4), 131–151. https://doi.org/10.1159/000486546

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420–424. https://doi.org/10.1038/nature17946

Korczyn, A. D. (2012). Why have we Failed to Cure Alzheimer's Disease? Journal of Alzheimer's Disease, 29(2), 275–282. https://doi.org/10.3233/JAD-2011-110359

Lin, Y.-T., Seo, J., Gao, F., Feldman, H. M., Wen, H.-L., Penney, J., Cam, H. P., Gjoneska, E., Raja, W. K., Cheng, J., Rueda, R., Kritskiy, O., Abdurrob, F., Peng, Z., Milo, B., Yu, C. J., Elmsaouri, S., Dey, D., Ko, T., … Tsai, L.-H. (2018). APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer's Disease Phenotypes in Human iPSC-Derived Brain Cell Types. Neuron, 98(6), 1141-1154.e7. https://doi.org/10.1016/j.neuron.2018.05.008

Liu, W., Li, L., Jiang, J., Wu, M., & Lin, P. (2021). Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precision Clinical Medicine, 4(3), 179–191. https://doi.org/10.1093/pcmedi/pbab014

Lu, L., Yu, X., Cai, Y., Sun, M., & Yang, H. (2021). Application of CRISPR/Cas9 in Alzheimer's Disease. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.803894

M. Di Battista, A., M. Heinsinger, N., & William Rebeck, G. (2016). Alzheimer's Disease Genetic Risk Factor APOE-ε4 Also Affects Normal Brain Function. Current Alzheimer Research, 13(11), 1200–1207. https://doi.org/10.2174/1567205013666160401115127

Mamun, A. Al, Uddin, Md. S., Bin Bashar, Md. F., Zaman, S., Begum, Y., Bulbul, I. J., Islam, Md. S., Sarwar, Md. S., Mathew, B., Amran, Md. S., Md Ashraf, G., Bin-Jumah, M. N., Mousa, S. A., & Abdel-Daim, M. M. (2020). Molecular Insight into the Therapeutic Promise of Targeting APOE4 for Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2020, 1–16. https://doi.org/10.1155/2020/5086250

Meiliana, A., Dewi, N. M., & Wijaya, A. (2017). Genome Editing with Crispr-Cas9 Systems: Basic Research and Clinical Applications. The Indonesian Biomedical Journal, 9(1), 1. https://doi.org/10.18585/inabj.v9i1.272

Nagata, K., Takahashi, M., Matsuba, Y., Okuyama-Uchimura, F., Sato, K., Hashimoto, S., Saito, T., & Saido, T. C. (2018). Generation of App knock-in mice reveals deletion mutations protective against Alzheimer's disease-like pathology. Nature Communications, 9(1), 1800. https://doi.org/10.1038/s41467-018-04238-0

Ortiz, G. G., Pacheco-Moisés, F. P., González-Renovato, E. D., Figuera, L., Macías-Islas, M. A., Mireles-Ramírez, M., Flores-Alvarado, L. J., Sánchez-López, A., Nuño-Penilla, D. G., Velázquez-Brizuela, I. E., Sánchez-Luna, J. P., & de la Rosa, A. C. (2015). Genetic, Biochemical and Histopathological Aspects of Familiar Alzheimer's Disease. In Alzheimer's Disease - Challenges for the Future. InTech. https://doi.org/10.5772/59809

Park, H., Oh, J., Shim, G., Cho, B., Chang, Y., Kim, S., Baek, S., Kim, H., Shin, J., Choi, H., Yoo, J., Kim, J., Jun, W., Lee, M., Lengner, C. J., Oh, Y.-K., & Kim, J. (2019). In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer's disease. Nature Neuroscience, 22(4), 524–528. https://doi.org/10.1038/s41593-019-0352-0

Safieh, M., Korczyn, A. D., & Michaelson, D. M. (2019). ApoE4: an emerging therapeutic target for Alzheimer's disease. BMC Medicine, 17(1), 64. https://doi.org/10.1186/s12916-019-1299-4

Sienski, G., Narayan, P., Bonner, J. M., Kory, N., Boland, S., Arczewska, A. A., Ralvenius, W. T., Akay, L., Lockshin, E., He, L., Milo, B., Graziosi, A., Baru, V., Lewis, C. A., Kellis, M., Sabatini, D. M., Tsai, L.-H., & Lindquist, S. (2021). APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Science Translational Medicine, 13(583). https://doi.org/10.1126/scitranslmed.aaz4564

Sosa-Ortiz, A. L., Acosta-Castillo, I., & Prince, M. J. (2012). Epidemiology of Dementias and Alzheimer's Disease. Archives of Medical Research, 43(8), 600–608. https://doi.org/10.1016/j.arcmed.2012.11.003

Stepanichev, M. (2020). Gene Editing and Alzheimer's Disease: Is There Light at the End of the Tunnel? Frontiers in Genome Editing, 2. https://doi.org/10.3389/fgeed.2020.00004

Swarup, V., Hinz, F. I., Rexach, J. E., Noguchi, K., Toyoshiba, H., Oda, A., Hirai, K., Sarkar, A., Seyfried, N. T., Cheng, C., Haggarty, S. J., Ferrari, R., Rohrer, J. D., Ramasamy, A., Hardy, J., Hernandez, D. G., Nalls, M. A., Singleton, A. B., Kwok, J. B. J., … Geschwind, D. H. (2019). Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nature Medicine, 25(1), 152–164. https://doi.org/10.1038/s41591-018-0223-3

Tcw, J., & Goate, A. M. (2017). Genetics of β-Amyloid Precursor Protein in Alzheimer's Disease. Cold Spring Harbor Perspectives in Medicine, 7(6), a024539. https://doi.org/10.1101/cshperspect.a024539

United Nations. (2019). World Population Ageing 2019: Highlights.

Villegas-Llerena, C., Phillips, A., Garcia-Reitboeck, P., Hardy, J., & Pocock, J. M. (2016). Microglial genes regulating neuroinflammation in the progression of Alzheimer's disease. Current Opinion in Neurobiology, 36, 74–81. https://doi.org/10.1016/j.conb.2015.10.004

Wang, D., Zhang, F., & Gao, G. (2020). CRISPR-Based Therapeutic Genome Editing: Strategies and In Vivo Delivery by AAV Vectors. Cell, 181(1), 136–150. https://doi.org/10.1016/j.cell.2020.03.023

Wang, H., Yang, F., Zhang, S., Xin, R., & Sun, Y. (2021). Genetic and environmental factors in Alzheimer's and Parkinson's diseases and promising therapeutic intervention via fecal microbiota transplantation. Npj Parkinson's Disease, 7(1), 70. https://doi.org/10.1038/s41531-021-00213-7

Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C.-C., & Bu, G. (2019). Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nature Reviews Neurology, 15(9), 501–518. https://doi.org/10.1038/s41582-019-0228-7

Zalocusky, K. A., Nelson, M. R., & Huang, Y. (2019). An Alzheimer's-disease-protective APOE mutation. Nature Medicine, 25(11), 1648–1649. https://doi.org/10.1038/s41591-019-0634-9

Zhang, H., Ma, Q., Zhang, Y., & Xu, H. (2012). Proteolytic processing of Alzheimer's β‐amyloid precursor protein. Journal of Neurochemistry, 120(s1), 9–21. https://doi.org/10.1111/j.1471-4159.2011.07519.x

Zhang, Y., Thompson, R., Zhang, H., & Xu, H. (2011). APP processing in Alzheimer's disease. Molecular Brain, 4(1), 3. https://doi.org/10.1186/1756-6606-4-3

Zhao, N., Liu, C.-C., Qiao, W., & Bu, G. (2018). Apolipoprotein E, Receptors, and Modulation of Alzheimer's Disease. Biological Psychiatry, 83(4), 347–357. https://doi.org/10.1016/j.biopsych.2017.03.003

Authors

Ilham Rahmanto
Maulana Bagus Adi Cahyono
Husnul Khatimah
Rahmi Nugraningrum
Pionera Seconda Giyanti Putri
Nurul Zulfa Sahiruddin
Nabila Rahmaniah
Pradana Zaky Romadhon
zaky.romadhon@fk.unair.ac.id (Primary Contact)
Rahmanto, I., Cahyono, M. B. A., Khatimah, H., Nugraningrum, R., Putri, P. S. G., Sahiruddin, N. Z., … Romadhon, P. Z. (2024). Tandem peptide lipid CRISPR-Cas9 complex combating APP and APOE4 gene abnormality in Alzheimer’s disease. Qanun Medika - Medical Journal Faculty of Medicine Muhammadiyah Surabaya, 8(01). https://doi.org/10.30651/jqm.v8i01.16054

Article Details

Mapping and Determining of Priority Areas Interventions for Toddler Diarrhea in Surabaya

Yuli Puspita Devi, Sofwatun Nida, Muthmainnah Muthmainnah, Martya Rahmaniati Makful
Abstract View : 660
Download :156