Shallot (Allium cepa L.) Skin Ethanol Extract Neutralizes Liver Oxidative Stress in Diazinon-Induced Wistar Rats
Abstract
ABSTRACT
Diazinon has a hepatotoxic effect since it is metabolized in the liver involving Kupffer cells (KCs) activation, increasing reactive oxygen species (ROS). The flavonoids contained in shallot (Allium cepa L.) skin act as antioxidants neutralizing oxidative stress. This study aims to determine the effect of shallot skin ethanol extract (SSEE) on liver MDA level and activated KCs histopathology. The total flavonoids level of SSEE was measured using the aluminum chloride colorimetric method and resulted in 228.1 mg QE/g. Rats were divided into normal, diazinon, and SSEE groups. Diazinon was administered at a dose of 40 mg/kg b.w. for 7 days, followed by SSEE at the dose of 600, 900, and 1,200 mg/kg b.w. for 7 days. Liver malondialdehyde (MDA) level was measured using the MDA-TBA method. The results revealed that diazinon increased liver MDA level (p <0.05), while SSEE at doses of 900 and 1,200 mg/kg b.w. decreased liver MDA level equal to normal (p>0.05). Activated KCs in the SSEE group at a dose of 1,200 mg/kg b.w. was impressively equal to the normal group. In conclusion, SSEE at dose of 1,200 mg/kg b.w. neutralize liver oxidative stress due to diazinon indicated by the decrease of liver MDA level and activated KCs equal to normal.
Keywords: antioxidant, diazinon, Kupffer cell, liver, MDA, shallot
Correspondence: rosita.fk@unej.ac.id
Full text article
References
AbouZid, S. F., & Elsherbeiny, G. M. (2008). Increase in flavonoids content in red onion peel by mechanical shredding. Journal of Medicinal Plants Research, 2(9), 258–260.
Agency fo Toxic Substance and Disesase Registry (ATSDR). (2018). Toxological Profiles for Diazinon. Retrieved October 8, 2020, from https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=512&tid=90
Ahmed, A. F., Al-Yousef, H. M., Al-Qahtani, J. H., & Al-Said, M. S. (2017). A hepatonephro-protective phenolic-rich extract from red onion (Allium cepa L.) peels. Pakistan Journal of Pharmaceutical Sciences, 30(5), 1971–1979.
Akdemir, F. N. E., Gülçin, İ., Karagöz, B., & Soslu, R. (2016). Quercetin protects rat skeletal muscle from ischemia reperfusion injury. Journal of Enzyme Inhibition and Medicinal Chemistry, 31, 162–166. https://doi.org/10.1080/14756366.2016.1193735
Al-Attar, A. M., Elnaggar, M. H. R., & Almalki, E. A. (2017). Protective effect of some plant oils on diazinon induced hepatorenal toxicity in male rats. Saudi Journal of Biological Sciences, 24(6), 1162–1171. https://doi.org/10.1016/j.sjbs.2016.10.013
Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438. https://doi.org/10.1155/2014/360438
Boadi, W. Y., Amartey, P. K., & Lo, A. (2016). Effect of quercetin, genistein and kaempferol on glutathione and glutathione-redox cycle enzymes in 3T3-L1 preadipocytes. Drug and Chemical Toxicology, 39(3), 239–247. https://doi.org/10.3109/01480545.2015.1082135
Carmona-Aparicio, L., Cárdenas-RodrÃguez, N., Delgado-Lamas, G., Pedraza-Chaverri, J., Montesinos-Correa, H., Rivera-Espinosa, L., … Coballase-Urrutia, E. (2019). Dose-Dependent Behavioral and Antioxidant Effects of Quercetin and Methanolic and Acetonic Extracts from Heterotheca inuloides on Several Rat Tissues following Kainic Acid-Induced Status Epilepticus. Oxidative Medicine and Cellular Longevity, 2019, 5287507. https://doi.org/10.1155/2019/5287507
Cemeli, E., Baumgartner, A., & Anderson, D. (2009). Antioxidants and the Comet assay. Mutation Research - Reviews in Mutation Research, 681(1), 51–67. https://doi.org/10.1016/j.mrrev.2008.05.002
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3), 178–182. https://doi.org/10.38212/2224-6614.2748
Direktorat Pupuk Dan Pestisida. (2016). Pestisida Pertanian dan Kehutanan Tahun 2016. Jakarta: Kementerian Pertanian Republik Indonesia.
Eddleston, M., Buckley, N. A., Eyer, P., & Dawson, A. H. (2008). Management of acute organophosphorus pesticide poisoning. The Lancet, Vol. 371, pp. 597–607. https://doi.org/10.1016/S0140-6736(07)61202-1
Elersek, T., & Filipic, M. (2011). Organophosphorous Pesticides - Mechanisms of Their Toxicity. In I. T. Europe (Ed.), Pesticides - The Impacts of Pesticides Exposure. Rijeka. https://doi.org/10.5772/14020
Elsyana, V., & Tutik. (2018). Penapisan Fitokimia dan Skrining Toksisitas Ekstrak Etanol Kulit Bawang Merah. Jurnal Farmasi Malahayati, 1(2), 107–114.
Himah, S. A., Wisudanti, D. D., & Fatmawati, H. (2018). Effect of Soyflour (Glycine max L.) Hepatoprotector Activity on Liver MDA Level in Male Wistar Rat Induced by Diazinon. Journal of Agromedicine and Medical Sciences, 4(1), 1–6. https://doi.org/10.19184/ams.v4i1.6857
Jung, J. Y., Lim, Y., Moon, M. S., Kim, J. Y., & Kwon, O. (2011). Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats. Nutrition and Metabolism, 8(1). https://doi.org/10.1186/1743-7075-8-18
Lee, B., Jung, J. H., & Kim, H. S. (2012). Assessment of red onion on antioxidant activity in rat. Food and Chemical Toxicology, 50(11), 3912–3919. https://doi.org/10.1016/j.fct.2012.08.004
Lee, J., Koo, N., & Min, D. B. (2004). Reactive Oxygen Species, Aging, and Antioxidative Nutraceuticals. Comprehensive Reviews in Food Science and Food Safety, 3(1), 21–33. https://doi.org/10.1111/j.1541-4337.2004.tb00058.x
Mardiah, N., Mulyanto, C., Amelia, A., Lisnawati, L., Anggraeni, D., & Rahmawanty, D. (2017). Penentuan Aktivitas Antioksidan dari Ekstrak Kulit Bawang Merah dengan Metode DPPH. Jurnal Pharmascience, 4(2). https://doi.org/10.20527/jps.v4i2.5768
Shi, G. Q., Yang, J., Liu, J., Liu, S. N., Song, H. X., Zhao, W. E., & Liu, Y. Q. (2016). Isolation of flavonoids from onion skin and their effects on K562 cell viability. Bangladesh Journal of Pharmacology, 11, 18–25. https://doi.org/10.3329/bjp.v11iS1.26419
Skerget, M., Majhenie, L., Bezjak, M., & Knez, Z. (2009). Antioxidant, radical scavenging and antimicrobial activities of red onion (Allium cepa L) skin and edible part extracts. Chemical and Biochemical Engineering Quarterly, 23(4), 435–444.
Suryadinata, R. V., Bambang, W., & Adriani, M. (2017). Efektivitas Penurunan Malondialdehyde dengan Kombinasi Suplemen Antioksidan Superoxide Dismutase Melondan Gliadin Akibat Paparan Rokok. Global Medical and Health Communication, 5(2), 79–83.
Utami, D. P., Dangiran, H. L., & Darundiati, Y. H. (2017). Hubungan Paparan Pestisida Organofosfat Dengan Laju Endap Darah (Led) Pada Petani Di Desa Sumberejo Kecamatan Ngablak Kabupaten Magelang (Association Between Exposure Organophosphate Pesticides With Erythrocyte Sedimentation Rate (Esr) Among Farmers in De. Jurnal Kesehatan Masyarakat (e-Journal), 5(3).
Vásquez-Espinal, A., Yañez, O., Osorio, E., Areche, C., GarcÃa-Beltrán, O., Ruiz, L. M., … Tiznado, W. (2019). Theoretical Study of the Antioxidant Activity of Quercetin Oxidation Products. Frontiers in Chemistry, 7(818). https://doi.org/10.3389/fchem.2019.00818
Wisudanti, D. D., Herdiana, F., & Qodar, T. S. (2019). Diazinon Toxicity to Kidney and Liver of Wistar Male Rats in terms of Biochemical and Histopathological Parameters. Journal of Agromedicine and Medical Sciences, 5(2), 112–117. https://doi.org/10.19184/ams.v5i2.11575
Zerin, T., Kim, Y. S., Hong, S. Y., & Song, H. Y. (2013). Quercetin reduces oxidative damage induced by paraquat via modulating expression of antioxidant genes in A549 cells. Journal of Applied Toxicology, 33(12), 1460–1467. https://doi.org/10.1002/jat.2812
Zhao, Y., Vanhoutte, P. M., & Leung, S. W. S. (2015). Vascular nitric oxide: Beyond eNOS. Journal of Pharmacological Sciences, 129(2), 83–94. https://doi.org/10.1016/j.jphs.2015.09.002
Authors

Qanun Medika by FK UM Surabaya is liscence under Lisensi Creative Commons Atribusi 4.0 Internasional.