Indonesian EFL Learners’ Perceptions of ChatGPT’s Translation Readability in Translating English Literary Text

Luqman Rosyidy (1), Anam Sutopo (2), Dwi Haryanti (3)
(1) a:1:{s:5:"en_US";s:34:"Universitas Muhammadiyah Surakarta";}, Indonesia,
(2) Universitas Muhammadiyah Surakarta, Indonesia,
(3) Universitas Muhammadiyah Surakarta, Indonesia

Abstrak

This study investigated how English as foreign language (EFL) learners in a literary community setting perceived the readability of ChatGPT’s translations in translating an English short story into Indonesian. This research used a short story written by Gerald Murnane entitled The Boy’s Name was David. By using a descriptive qualitative approach, the research explored two questions: the readability score of the translations and learners’ perceptions of this readability. Purposive sampling was employed by involving 18 EFL learners from Kurvadot Creative, a literature discussion community in Cepu, Indonesia. The data were collected through document, questionnaires, and focus group discussions. The readability assessment was analyzed by using Nababan’s Translation Quality Assessment (TQA) framework, while the EFL learners’ perceptions in the discussion was analyzed by using thematic analysis. The results revealed that learners generally rated the ChatGPT translations as Readable, with an average score of 2.68. However, the participants also identified several challenges. These included linguistic issues, such as issues with syntax, semantics, and stylistics, as well as reading engagement problems where the participants required more time to read certain parts of the translation. In addition, the untranslated sentences caused by ChatGPT's content policy restrictions added to the challenges. Despite the relatively high readability ratings, these factors disrupted participants' overall reading experiences with the translated short story by ChatGPT.

Artikel teks lengkap

##article.generated_from_xml##

Referensi

Afdholy, N., Ahmadi, A., & Murti, G. H. (2020). Preserving local literary community: literary planning and policy as a cultural strategy in Indonesia. Satwika : Kajian Ilmu Budaya Dan Perubahan Sosial, 4(2), 157–164. https://doi.org/10.22219/satwika.v4i2.13945

Ainan Ningrum, & Dewi, U. (2024). The Use of Google Translate and U-Dictionary as Machine Translation for Translating Text: EFL College Student’s Preference and Perceptions. ETERNAL (English Teaching Journal), 15(1), 167–179. https://doi.org/10.26877/eternal.v15i1.373

Baihaqi, A., & Mulyana, A. (2021). Reviewing the result of machine translation: a case for indonesian translation version by google translate and imtranslator. PROJECT (Professional Journal of English Education), 4(1), 1. https://doi.org/10.22460/project.v4i1.p1-9

Bania, A. S., & Faridy, N. (2023). Quality of translation via google translate in comedy texts. Englisia: Journal of Language, Education, and Humanities, 11(1). https://doi.org/10.22373/ej.v11i1.19364

Beinborn, L., Zesch, T., & Gurevych, I. (2014). Readability for foreign language learning: The importance of cognates. ITL - International Journal of Applied Linguistics, 165(2), 136–162. https://doi.org/10.1075/itl.165.2.02bei

Bukar, U. A., Sayeed, M. S., Abdul Razak, S. F., Yogarayan, S., & Ahmed Amodu, O. (2024). An integrative decision-making framework to guide policies on regulating ChatGPT usage. PeerJ Computer Science, 10, e1845. https://doi.org/10.7717/peerj-cs.1845

Carman, L. (2018, April 23). In the room with Gerald Murnane. Sydney Review of Books. https://sydneyreviewofbooks.com/essays/in-the-room-with-gerald-murnane

Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (third edition). SAGE.

Diasti, K. S. (2024). Utilizing ChatGPT in English Language Learning: Higher Education Students’ Experience. In E. M. Dukut, A. Suratno, H. Hartono, R. Gajjala, M. M. Jayanthi, C. D. Gabriel, & H. P. Atilano (Eds.), Proceedings of the 7th Celt International Conference (CIC 2024) (Vol. 897, pp. 190–200). Atlantis Press SARL. https://doi.org/10.2991/978-2-38476-348-1_14

Duncan, C., & Mcculloh, I. (2023). Unmasking Bias in Chat GPT Responses. Proceedings of the International Conference on Advances in Social Networks Analysis and Mining, 687–691. https://doi.org/10.1145/3625007.3627484

Gambier, Y. (2023). The conceptualisation of translation in translation studies: A response. Translation Studies, 16(2), 317–322. https://doi.org/10.1080/14781700.2023.2209576

Ghosh, S., & Caliskan, A. (2023). ChatGPT Perpetuates Gender Bias in Machine Translation and Ignores Non-Gendered Pronouns: Findings across Bengali and Five other Low-Resource Languages. Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, 901–912. https://doi.org/10.1145/3600211.3604672

Guerberof-Arenas, A., & Toral, A. (2024). To be or not to be: A translation reception study of a literary text translated into Dutch and Catalan using machine translation. Target. International Journal of Translation Studies, 36(2), 215–244. https://doi.org/10.1075/target.22134.gue

Haleem, A., Javaid, M., & Singh, R. P. (2022). An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(4), 100089. https://doi.org/10.1016/j.tbench.2023.100089

Hidayati, N. N., & Nihayah, D. H. (2024). Google Translate, ChatGPT or Google Bard AI: A Study toward Non-English Department College Students’ Preference and Translation Comparison. Inspiring: English Education Journal, 7(1), 14–33. https://doi.org/10.35905/inspiring.v7i1.8821

Ismailia, T. (2023). Analysis of Machine Translation Performance on Translating Informative Text from English into Indonesian. EBONY: Journal of English Language Teaching, Linguistics, and Literature, 3(2), 129–138. https://doi.org/10.37304/ebony.v3i2.9809

Jeane Tuilan, Herminus Efrando Pabur, & Ignatius J. C. Tuerah. (2023). Online Machine Translation and Language Learning: EFL Learners’ Practices and Beliefs. Technium Social Sciences Journal, 50, 342–354. https://doi.org/10.47577/tssj.v50i1.9910

Kastowo, C., Christiani, T. A., & Sundari, E. (2024). Chat GPT from Educational, Legal and Ethical Perspectives in Indonesia. Revista de Gestão Social e Ambiental, 18(7), e04941. https://doi.org/10.24857/rgsa.v18n7-071

Khairudin, A., Sukma, N. C., & Kebudayaan, I. D. J. (2023). Lawatan jalan terus: Catatan perjalanan. Direktorat Jenderal Kebudayaan, Kemendikbudristek RI. https://books.google.co.id/books?id=MW6r0AEACAAJ

Kim, M. (2004). Literature Discussions in Adult L2 Learning. Language and Education, 18(2), 145–166. https://doi.org/10.1080/09500780408666872

Manifeste, D. (2023). Mastering ChatGPT: Create Highly Effective Prompts, Strategies, and Best Practices to Go From Novice to Expert. TJ Books. https://destinymanifest.gumroad.com/l/

McDonald, S. V. (2020). Accuracy, readability, and acceptability in translation. Applied Translation. https://doi.org/10.51708/apptrans.v14n2.1238

Murnane, G. (2018). Stream system: The collected short fiction of Gerald Murnane (First edition). Farrar, Straus and Giroux.

Murphy, J. (2013). Reading landscape in Gerald Murnane’s ThePlains. Exegesis 4, 2, 4–13.

Murphy, J. (2014). Being-in-Landscape: A Heideggerian Reading of Landscape in Gerald Murnane’s Inland. Journal of the Association for the Study of Australian Literature, 14(3). https://openjournals.library.sydney.edu.au/JASAL/article/view/10279

Nababan, M., & Nuraeni, A. (2012). Pengembangan model penilaian kualitas terjemahan. Kajian Linguistik dan Sastra, 24(1), 39–57.

Nababan, M., & Santosa, R. (2018). Translation techniques and their impact on the readability of translated bible stories for children. Humanus, 17(2), 212–222. http://dx.doi.org/10.24036/humanus.v17i2.102729

Nasution, D. K. (2022). Machine Translation in Website Localization: Assessing its Translation Quality for Language Learning. AL-ISHLAH: Jurnal Pendidikan, 14(2), 1879–1886. https://doi.org/10.35445/alishlah.v14i2.1308

Naveen, P., & Trojovský, P. (2024). Overview and challenges of machine translation for contextually appropriate translations. iScience, 27(10), 110878. https://doi.org/10.1016/j.isci.2024.110878

Neuman, W. L. (2014). Social research methods: Qualitative and quantitative approaches (Seventh edition, Pearson new international edition). Pearson.

Postigo, M. L. (2024). ChatGPT and MT-Systems: Advantages and Limitations when Translating English to Spanish and Portuguese. LABARTA POSTIGO. https://roderic.uv.es/rest/api/core/bitstreams/d5ef9b11-ef36-4776-8eac-79a5d99a0a5c/content

Putrawan, G. E. (2019). The Role of First Language and Translation in EFL Learning: A Brief Literature Review. International Journal of Linguistics, Literature and Translation, 2(2), 150–154. https://doi.org/10.32996/ijllt.2019.2.2.23

Raad, B. (2020). The Role of Machine Translation in Language Learning. Academic Research International, 7, 2348–7666.

Rohmah, Z. (2005). English as a global language: Its historical past and its future. Jurnal Bahasa & Seni, 33(1), 106–117.

Taivalkoski-Shilov, K. (2019). Free indirect discourse: An insurmountable challenge for literary MT systems? Proceedings of the Qualities of Literary Machine Translation, 35–39.

Teng, M. F. (2024). “ChatGPT is the companion, not enemies”: EFL learners’ perceptions and experiences in using ChatGPT for feedback in writing. Computers and Education: Artificial Intelligence, 7, 100270. https://doi.org/10.1016/j.caeai.2024.100270

Turganbayeva, A., Rakhimova, D., Karyukin, V., Karibayeva, A., & Turarbek, A. (2022). Semantic Connections in the Complex Sentences for Post-Editing Machine Translation in the Kazakh Language. Information, 13(9), 411. https://doi.org/10.3390/info13090411

Uhlmann, A. (2015). Silence and Sound in the Sentences of Gerald Murnane’s A Million Windows. Journal of the Association for the Study of Australian Literature, 15(1). https://openjournals.library.sydney.edu.au/JASAL/article/view/9937

Urlaub, P., & Dessein, E. (2022). Machine translation and foreign language education. Frontiers in Artificial Intelligence, 5, 936111. https://doi.org/10.3389/frai.2022.936111

Vo, T. K. O., & Huynh, M. T. V. (2024). Exploring the Benefits of Authentic Materials in Enhancing Translation Students’ Motivation. International Journal of Social Science and Human Research, 7(07). https://doi.org/10.47191/ijsshr/v7-i07-39

Winiharti, M., Syihabuddin, S., & Sudana, D. (2021). On Google Translate: Students’ and Lecturers’ Perception of the English Translation of Indonesian Scholarly Articles. Lingua Cultura, 15(2), 207–214. https://doi.org/10.21512/lc.v15i2.7335

Xiao, Y., & Zhi, Y. (2023). An Exploratory Study of EFL Learners’ Use of ChatGPT for Language Learning Tasks: Experience and Perceptions. Languages, 8(3), 212. https://doi.org/10.3390/languages8030212

Yuxiu, Y. (2024). Application of translation technology based on AI in translation teaching. Systems and Soft Computing, 6, 200072. https://doi.org/10.1016/j.sasc.2024.200072

Penulis

Luqman Rosyidy
rosyidyluqman@gmail.com (Kontak utama)
Anam Sutopo
Dwi Haryanti
Biografi Penulis

Anam Sutopo, Universitas Muhammadiyah Surakarta

Professor Anam Sutopo
  • Kepala Merangkap Sekertaris Rektor Biro Rektorat
  • Guru Besar Program Studi Pendidikan Bahasa Inggris, Fakultas Keguruan dan Ilmu Pendidikan

Dwi Haryanti, Universitas Muhammadiyah Surakarta

Dr Dwi Haryanti
  • Kepala Lembaga Bahasa dan Ilmu Pengetahuan Umum
  • Lektor Kepala Program Studi Pendidikan Bahasa Inggris, Fakultas Keguruan dan Ilmu Pendidikan
Rosyidy, L., Sutopo, A., & Haryanti, D. (2025). Indonesian EFL Learners’ Perceptions of ChatGPT’s Translation Readability in Translating English Literary Text. Tell : Teaching of English Language and Literature Journal, 13(2). https://doi.org/10.30651/tell.v13i2.25641

Rincian Artikel