Osteopontin and Its Clinical Correlation to Type 1 Cardiorenal Syndrome: A Literature Review

Yongki Welliam (1), Citrawati Dyah Kencono Wungu (2), Hendri Susilo (3)
(1) Faculty of Medicine, Universitas Airlangga, Indonesia,
(2) Faculty of Medicine, Universitas Airlangga, Indonesia,
(3) Faculty of Medicine, Universitas Airlangga, Indonesia

Abstract

Cardiorenal syndrome (CRS) is a spectrum of disorders involving both the heart and the kidneys, either acutely or chronically, in one organ that can lead to dysfunction in the other. Type 1 CRS, the most common CRS, is when acute heart dysfunction impacts acute kidney dysfunction, commonly known as acute kidney injury. Comorbidities involving these two significant organs contribute to a high patient mortality rate that requires a new potential diagnostic method. Biomarkers are one of the diagnostic modalities widely used in various diseases. Osteopontin (OPN) is a phosphorylated glycoprotein found primarily in bones and teeth that regulates mineralization. Osteopontin is known to be involved in describing various pathological changes in the body, including cardiovascular diseases. This review aims to evaluate the clinical correlation of OPN level changes with the occurrence of Type 1 CRS. The results indicate that OPN also plays a role in detecting the progression of cardiovascular disease towards renal injury. The imbalance in the function of OPN as a pro-inflammatory and anti-inflammatory agent increases the progression of kidney disease in patients. Further findings suggest that, more specifically, urinary OPN describes renal injury events in type 1 CRS patients.

Full text article

Generated from XML file

References

Afsar, B. (2017). Pathophysiology of copeptin in kidney disease and hypertension. Clinical Hypertension, 23(1), 1–8. https://doi.org/10.1186/s40885-017-0068-y

Askenazi, D. J., Koralkar, R., Hundley, H. E., Montesanti, A., Parwar, P., Sonjara, S., & Ambalavanan, N. (2012). Urine biomarkers predict acute kidney injury in newborns. Journal of Pediatrics, 161(2), 270-275.e1. https://doi.org/10.1016/j.jpeds.2012.02.007

Behnes, M., Brueckmann, M., Lang, S., Espeter, F., Weiss, C., Neumaier, M., Ahmad-Nejad, P., Borggrefe, M., & Hoffmann, U. (2013). Diagnostic and prognostic value of osteopontin in patients with acute congestive heart failure. European Journal of Heart Failure, 15(12), 1390–1400. https://doi.org/10.1093/eurjhf/hft112

Bjurman, C., Petzold, M., Venge, P., Farbemo, J., Fu, M. L. X., & Hammarsten, O. (2015). High-sensitive cardiac troponin, NT-proBNP, hFABP, and copeptin levels in relation to glomerular filtration rates and a medical record of cardiovascular disease. Clinical Biochemistry, 48(4–5), 302–307. https://doi.org/10.1016/j.clinbiochem.2015.01.008

Caravaca Perez, P., González-Juanatey, J. R., Nuche, J., Matute-Blanco, L., Serrano, I., Martínez Selles, M., Vázquez García, R., Martínez Dolz, L., Gómez-Bueno, M., Pascual Figal, D., Crespo-Leiro, M. G., García-Osuna, Á., Ordoñez-Llanos, J., Cinca Cuscullola, J., Guerra, J. M., & Delgado, J. F. (2022). Renal Function Impact in the Prognostic Value of Galectin-3 in Acute Heart Failure. Frontiers in Cardiovascular Medicine, 9(April), 1–11. https://doi.org/10.3389/fcvm.2022.861651

Chen, J., Lu, Y., Huang, D., Luo, X., & Zhang, Y. (2014). Relationship of osteopontin and renal function with severity of coronary artery lesions. International Journal of Clinical and Experimental Medicine, 7(4), 1122–1127.

Cheong, K. I., Leu, H. B., Wu, C. C., Yin, W. H., Wang, J. H., Lin, T. H., Tseng, W. K., Chang, K. C., Chu, S. H., Yeh, H. I., Chen, J. W., & Wu, Y. W. (2023). The clinical significance of osteopontin on the cardiovascular outcomes in patients with stable coronary artery disease. Journal of the Formosan Medical Association, 122(4), 328–337. https://doi.org/10.1016/j.jfma.2022.11.011

Dupont, M., Shrestha, K., Singh, D., Finucan, M., & Tang, W. H. W. (2013). Lack of concordance in defining worsening renal function by rise in creatinine vs rise in cystatin C. Congestive Heart Failure, 19(4), 17–21. https://doi.org/10.1111/chf.12015

Feldreich, T., Carlsson, A. C., Helmersson-Karlqvist, J., Risérus, U., Larsson, A., Lind, L., & Ärnlöv, J. (2017). Urinary Osteopontin Predicts Incident Chronic Kidney Disease, while Plasma Osteopontin Predicts Cardiovascular Death in Elderly Men. CardioRenal Medicine, 7(3), 245–254. https://doi.org/10.1159/000476001

Fu, K., Hu, Y., Zhang, H., Wang, C., Lin, Z., Lu, H., & Ji, X. (2021). Insights of Worsening Renal Function in Type 1 Cardiorenal Syndrome: From the Pathogenesis, Biomarkers to Treatment. Frontiers in Cardiovascular Medicine, 8(December), 1–14. https://doi.org/10.3389/fcvm.2021.760152

Gilotra, N. A. (2014). Arginine vasopressin as a target in the treatment of acute heart failure. World Journal of Cardiology, 6(12), 1252. https://doi.org/10.4330/wjc.v6.i12.1252

Grams, M. E., Astor, B. C., Bash, L. D., Matsushita, K., Wang, Y., & Coresh, J. (2010). Albuminuria and estimated glomerular filtration rate independently associate with acute kidney injury. Journal of the American Society of Nephrology, 21(10), 1757–1764. https://doi.org/10.1681/ASN.2010010128

Grande, M. T., Pérez-Barriocanal, F., & Lápez-Novoa, J. M. (2010). Role of inflammation in tbulo-interstitial damage associated to obstructive nephropathy. Journal of Inflammation, 7, 1–14. https://doi.org/10.1186/1476-9255-7-19

Gungor, O., Unal, H. U., Guclu, A., Gezer, M., Eyileten, T., Guzel, F. B., Altunoren, O., Erken, E., Oguz, Y., Kocyigit, I., & Yilmaz, M. I. (2017). IL-33 and ST2 levels in chronic kidney disease: Associations with inflammation, vascular abnormalities, cardiovascular events, and survival. PLoS ONE, 12(6), 1–14. https://doi.org/10.1371/journal.pone.0178939

Hu, W., He, W., Liu, W., Fang, X., Wu, Y., Yu, F., & Hao, W. (2016). Risk Factors and Prognosis of Cardiorenal Syndrome Type 1 in Elderly Chinese Patients: A Retrospective Observational Cohort Study. Kidney and Blood Pressure Research, 41(5), 672–679. https://doi.org/10.1159/000447936

Icer, M. A., & Gezmen-Karadag, M. (2018). The multiple functions and mechanisms of osteopontin. Clinical Biochemistry, 59, 17–24. https://doi.org/10.1016/j.clinbiochem.2018.07.003

Kaleta, B. (2019). The role of osteopontin in kidney diseases. Inflammation Research, 68(2), 93–102. https://doi.org/10.1007/s00011-018-1200-5

Kamińska, J., Stopiński, M., Mucha, K., Pac, M., Gołębiowski, M., Niewczas, M. A., Pączek, L., & Foroncewicz, B. (2021). Circulating osteoprotegerin in chronic kidney disease and all-cause mortality. International Journal of General Medicine, 14, 2413–2420. https://doi.org/10.2147/IJGM.S302251

Kousa, O., Mullane, R., & Aboeata, A. (2023). Cardiorenal Syndrome. https://www.ncbi.nlm.nih.gov/books/NBK542305/

Kumar, U., Garimella, P. S., & Wettersten, N. (2019). Cardiorenal syndrome: pathophysiology. Cardiology Clinics, 37(3), 251–265. https://doi.org/10.1016/j.ccl.2019.04.001.Cardiorenal

Liakopoulos, V., Roumeliotis, S., Gorny, X., Dounousi, E., & Mertens, P. R. (2017). Oxidative Stress in Hemodialysis Patients: A Review of the Literature. Oxidative Medicine and Cellular Longevity, 2017(Cvd). https://doi.org/10.1155/2017/3081856

Lorenzen, J., Krämer, R., Kliem, V., Bode-Boeger, S. M., Veldink, H., Haller, H., Fliser, D., & Kielstein, J. T. (2010). Circulating levels of osteopontin are closely related to glomerular filtration rate and cardiovascular risk markers in patients with chronic kidney disease. European Journal of Clinical Investigation, 40(4), 294–300. https://doi.org/10.1111/j.1365-2362.2010.02271.x

Maranduca, M., Clim, A., Pinzariu, A., Statescu, C., Sascau, R., Tanase, D., Serban, D., Branisteanu, D., Branisteanu, D., Huzum, B., & Serban, I. (2023). Role of arterial hypertension and angiotensin II in chronic kidney disease (Review). Experimental and Therapeutic Medicine, 25(4), 1–5. https://doi.org/10.3892/etm.2023.11852

Mavrakanas, T. A., Khattak, A., Singh, K., & Charytan, D. M. (2017). Epidemiology and natural history of the cardiorenal syndromes in a cohort with echocardiography. Clinical Journal of the American Society of Nephrology, 12(10), 1624–1633. https://doi.org/10.2215/CJN.04020417

Mortara, A., Bonadies, M., Mazzetti, S., Fracchioni, I., Delfino, P., Chioffi, M., Bersano, C., & Specchia, G. (2013). Neutrophil gelatinase-associated lipocalin predicts worsening of renal function in acute heart failure: Methodological and clinical issues. Journal of Cardiovascular Medicine, 14(9), 629–634. https://doi.org/10.2459/JCM.0b013e3283629ca6

National Heart, Lung, and B. I. (2004). NHLBI Working Group: cardiorenal connections in heart failure and cardiovascular disease, 2004. https://www.nhlbi.nih.gov/events/2004/cardio-renal-connections-heartfailure-and-cardiovascular-disease

Palazzuoli, A., Ruocco, G., Pellegrini, M., Martini, S., Castillo, G. Del, Beltrami, M., Franci, B., Lucani, B., & Nuti, R. (2014). Patients with Cardiorenal Syndrome Revealed Increased Neurohormonal Activity, Tubular and Myocardial Damage Compared to Heart Failure Patients with Preserved Renal Function. CardioRenal Medicine, 4(4), 257–268. https://doi.org/10.1159/000368375

Paloian, N. J., & Giachelli, C. M. (2014). A current understanding of vascular calcification in CKD. American Journal of Physiology - Renal Physiology, 307(8), F891–F900. https://doi.org/10.1152/ajprenal.00163.2014

Pei, Z., Okura, T., Nagao, T., Enomoto, D., Kukida, M., Tanino, A., Miyoshi, K. I., Kurata, M., & Higaki, J. (2016). Osteopontin deficiency reduces kidney damage from hypercholesterolemia in Apolipoprotein E-deficient mice. Scientific Reports, 6(June), 1–12. https://doi.org/10.1038/srep28882

Pimienta González, R., Couto Comba, P., Rodríguez Esteban, M., Alemán Sánchez, J. J., Hernández Afonso, J., Rodríguez Pérez, M. D. C., Marcelino Rodríguez, I., Brito Díaz, B., Elosua, R., & Cabrera De León, A. (2016). Incidence, mortality and positive predictive value of type 1 cardiorenal syndrome in acute coronary syndrome. PLoS ONE, 11(12), 1–12. https://doi.org/10.1371/journal.pone.0167166

Rangaswami, J., Bhalla, V., Blair, J. E. A., Chang, T. I., Costa, S., Lentine, K. L., Lerma, E. V., Mezue, K., Molitch, M., Mullens, W., Ronco, C., Tang, W. H. W., & Mccullough, P. A. (2019). Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement From the American Heart Association. In Circulation (Vol. 139, Issue 16). https://doi.org/10.1161/CIR.0000000000000664

Ronco, C., Cicoira, M., & McCullough, P. A. (2012). Cardiorenal syndrome type 1: Pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. Journal of the American College of Cardiology, 60(12), 1031–1042. https://doi.org/10.1016/j.jacc.2012.01.077

Ronco, C., & Di Lullo, L. (2016). Cardiorenal Syndrome in Western Countries: Epidemiology, Diagnosis and Management Approaches. Kidney Diseases, 2(4), 151–163. https://doi.org/10.1159/000448749

Rosenberg, M., Zugck, C., Nelles, M., Juenger, C., Frank, D., Remppis, A., Giannitsis, E., Katus, H. A., & Frey, N. (2008). Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circulation. Heart Failure, 1(1), 43–49. https://doi.org/10.1161/CIRCHEARTFAILURE.107.746172

Roumeliotis, S., Roumeliotis, A., Dounousi, E., Eleftheriadis, T., & Liakopoulos, V. (2020). Biomarkers of vascular calcification in serum. In Advances in Clinical Chemistry (1st ed.). Elsevier Inc. https://doi.org/10.1016/bs.acc.2020.02.004

Roy, A. K., Mc Gorrian, C., Treacy, C., Kavanaugh, E., Brennan, A., Mahon, N. G., & Murray, P. T. (2013). A comparison of traditional and novel definitions (RIFLE, AKIN, and KDIGO) of acute kidney injury for the prediction of outcomes in acute decompensated heart failure. CardioRenal Medicine, 3(1), 26–37. https://doi.org/10.1159/000347037

Schneider, M. P., Schmid, M., Nadal, J., Krane, V., Saritas, T., Busch, M., Schultheiss, U. T., Meiselbach, H., Friedrich, N., Nauck, M., Floege, J., Kronenberg, F., Wanner, C., & Eckardt, K.-U. (2023). Copeptin, Natriuretic Peptides, and Cardiovascular Outcomes in Patients With CKD: The German Chronic Kidney Disease (GCKD) Study. Kidney Medicine, 100725. https://doi.org/10.1016/j.xkme.2023.100725

Shirakawa, K., Endo, J., Kataoka, M., Katsumata, Y., Yoshida, N., Yamamoto, T., Isobe, S., Moriyama, H., Goto, S., Kitakata, H., Hiraide, T., Fukuda, K., & Sano, M. (2018). IL (interleukin)-10-STAT3-galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction. Circulation, 138(18), 2021–2035. https://doi.org/10.1161/CIRCULATIONAHA.118.035047

Shirakawa, K., & Sano, M. (2021). Osteopontin in cardiovascular diseases. Biomolecules, 11(7), 1–18. https://doi.org/10.3390/biom11071047

Taub, P. R., Borden, K. C., Fard, A., & Maisel, A. (2012). Role of biomarkers in the diagnosis and prognosis of acute kidney injury in patients with cardiorenal syndrome. Expert Review of Cardiovascular Therapy, 10(5), 657–667. https://doi.org/10.1586/erc.12.26

Triposkiadis, F., Karayannis, G., Giamouzis, G., Skoularigis, J., Louridas, G., & Butler, J. (2009). The Sympathetic Nervous System in Heart Failure. Physiology, Pathophysiology, and Clinical Implications. Journal of the American College of Cardiology, 54(19), 1747–1762. https://doi.org/10.1016/j.jacc.2009.05.015

Trostel, J., Truong, L. D., Roncal-Jimenez, C., Miyazaki, M., Miyazaki-Anzai, S., Kuwabara, M., McMahan, R., Andres-Hernando, A., Sato, Y., Jensen, T., Lanaspa, M. A., Johnson, R. J., & Garcia, G. E. (2018). Disease different effects of global osteopontin and macrophage osteopontin in glomerular injury. American Journal of Physiology - Renal Physiology, 315(4), F759–F768. https://doi.org/10.1152/ajprenal.00458.2017

Uaesoontrachoon, K., Wasgewatte Wijesinghe, D. K., Mackie, E. J., & Pagel, C. N. (2013). Osteopontin deficiency delays inflammatory infiltration and the onset of muscle regeneration in a mouse model of muscle injury. DMM Disease Models and Mechanisms, 6(1), 197–205. https://doi.org/10.1242/dmm.009993

Uduman, J. (2018). Epidemiology of Cardiorenal Syndrome. Advances in Chronic Kidney Disease, 25(5), 391–399. https://doi.org/10.1053/j.ackd.2018.08.009

Waikar, S. S., Sabbisetti, V., Ärnlöv, J., Carlsson, A. C., Coresh, J., Feldman, H. I., Foster, M. C., Fufaa, G. D., Helmersson-Karlqvist, J., Hsu, C. Y., Kimmel, P. L., Larsson, A., Liu, Y., Lind, L., Liu, K. D., Mifflin, T. E., Nelson, R. G., Risérus, U., Vasan, R. S., … Bonventre, J. V. (2016). Relationship of proximal tubular injury to chronic kidney disease as assessed by urinary kidney injury molecule-1 in five cohort studies. Nephrology Dialysis Transplantation, 31(9), 1460–1470. https://doi.org/10.1093/ndt/gfw203

Wen, X., Zhang, J., Wan, X., Frank, A. A., Qu, X., & Kellum, J. A. (2020). Tissue Inhibitor of Metalloproteinases-2 Mediates Kidney Injury during Sepsis. Nephron, 144(12), 644–649. https://doi.org/10.1159/000511165

Wolak, T. (2014). Osteopontin - A multi-modal marker and mediator in atherosclerotic vascular disease. Atherosclerosis, 236(2), 327–337. https://doi.org/10.1016/j.atherosclerosis.2014.07.004

Wolak, T., Kim, H., Ren, Y., Kim, J., Vaziri, N. D., & Nicholas, S. B. (2009). Osteopontin modulates angiotensin II-induced inflammation, oxidative stress, and fibrosis of the kidney. Kidney International, 76(1), 32–43. https://doi.org/10.1038/ki.2009.90

Authors

Yongki Welliam
Citrawati Dyah Kencono Wungu
citrawati.dyah@fk.unair.ac.id (Primary Contact)
Hendri Susilo
Welliam, Y., Wungu, C. D. K., & Susilo, H. Osteopontin and Its Clinical Correlation to Type 1 Cardiorenal Syndrome: A Literature Review. Qanun Medika - Medical Journal Faculty of Medicine Muhammadiyah Surabaya, 9(01). https://doi.org/10.30651/jqm.v9i01.20878

Article Details

No Related Submission Found