Prevalence And Pattern Sensitivity Multidrug Antibiotics Resistant Pseudomonas aeruginosa in the High Care Unit at Dr. Soetomo General Academic Hospital Period 2022-2023
Abstract
The prevalence of Multidrug antibiotic-resistant Pseudomonas aeruginosa (MDRPA) has been increasing during the decade And has become attention in hospital patients. This retrospective descriptive descriptive aimed to determine the prevalence of MDRPA and its sensitivity patterns. Data were taken from results of bacterial culture and antibiotic resistance tests from various clinical specimens from patients at Dr. Soetomo General Academic Hospital throughout 2022-2023. The resistance test was carried out using a Vitek 2 compact instrument. MDRPA is defined as Pseudomonas aeruginosa that is not sensitive to three or more of the following classes of antibiotics: meropenem or imipenem, ciprofloxacin, gentamicin or amikacin, ceftazidime or cefepime, and piperacillin/ tazobactam. The prevalence of MDRPA was 57.0%. MDRPA isolates were also the most common origin from the burn unit and HCU A (high care unit A), mostly from pus specimens and sputum. Pseudomonas aeruginosa sensitivity was best with piperacillin/tazobactam (55.5%), meropenem (54.8%), amikacin (47.5%), gentamicin (46.5%), cefepime (46.3%), ceftazidime (45.0%), ciprofloxacin (44.7%) and aztreonam (43.2%). The sensitivity of MDRPA to antibiotics is much lower than that of Pseudomonas aeruginosa. This study showed high number of MDRPA specifically in Surabaya and the pattern sensitivity of Pseudomonas aeruginosa can become guidelines in choosing antibiotics treatment for patients.
Full text article
References
Álvarez-Lerma, F., & Grau, S. (2012). Management of antimicrobial use in the intensive care unit. Drugs, 72(4), 447–470. https://doi.org/10.2165/11599520-000000000-00000
Arora, B. S. (2014). Incidence of Multidrug Resistant Pseudomonas Aeruginosa Isolated from Burn Patients and Environment of Teaching Institution. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. https://doi.org/10.7860/JCDR/2014/7483.4383
Cerceo, E., Deitelzweig, S. B., Sherman, B. M., & Amin, A. N. (2016). Multidrug-Resistant Gram-Negative Bacterial Infections in the Hospital Setting: Overview, Implications for Clinical Practice, and Emerging Treatment Options. Microbial Drug Resistance (Larchmont, N.Y.), 22(5), 412–431. https://doi.org/10.1089/mdr.2015.0220
Dejsirilert, S., Suankratay, C., Trakulsomboon, S., Thongmali, O., Sawanpanyalert, P., Aswapokee, N., & Tantisiriwat, W. (2009). National Antimicrobial Resistance Surveillance, Thailand (NARST) data among clinical isolates of Pseudomonas aeruginosa in Thailand from 2000 to 2005. Journal of the Medical Association of Thailand = Chotmaihet Thangphaet, 92 Suppl 4, S68-75. http://www.ncbi.nlm.nih.gov/pubmed/21298847
El Zowalaty, M. E., Al Thani, A. A., Webster, T. J., El Zowalaty, A. E., Schweizer, H. P., Nasrallah, G. K., Marei, H. E., & Ashour, H. M. (2015). Pseudomonas aeruginosa : arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiology, 10(10), 1683–1706. https://doi.org/10.2217/fmb.15.48
Falagas, M. E., Kastoris, A. C., Karageorgopoulos, D. E., & Rafailidis, P. I. (2009). Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. International Journal of Antimicrobial Agents, 34(2), 111–120. https://doi.org/10.1016/j.ijantimicag.2009.03.009
Kanj, S. S., & Kanafani, Z. A. (2011). Current Concepts in Antimicrobial Therapy Against Resistant Gram-Negative Organisms: Extended-Spectrum β-Lactamase–Producing Enterobacteriaceae, Carbapenem-Resistant Enterobacteriaceae, and Multidrug-Resistant Pseudomonas aeruginosa. Mayo Clinic Proceedings, 86(3), 250–259. https://doi.org/10.4065/mcp.2010.0674
Katvoravutthichai, C., Boonbumrung, K., & Tiyawisutsri, R. (2016). Prevalence of β-lactamase classes A, C, and D among clinical isolates of Pseudomonas aeruginosa from a tertiary-level hospital in Bangkok, Thailand. Genetics and Molecular Research, 15(3). https://doi.org/10.4238/gmr.15038706
Lin, K.-Y., Lauderdale, T.-L., Wang, J.-T., & Chang, S.-C. (2016). Carbapenem-resistant Pseudomonas aeruginosa in Taiwan: Prevalence, risk factors, and impact on outcome of infections. Journal of Microbiology, Immunology and Infection, 49(1), 52–59. https://doi.org/10.1016/j.jmii.2014.01.005
Lister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-Resistant Pseudomonas aeruginosa : Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clinical Microbiology Reviews, 22(4), 582–610. https://doi.org/10.1128/CMR.00040-09
Logan, L. K., Gandra, S., Mandal, S., Klein, E. Y., Levinson, J., Weinstein, R. A., Laxminarayan, R., Prevention Epicenters Program, U. C. for D., & Prevention, C. and. (2017). Multidrug- and Carbapenem-Resistant Pseudomonas aeruginosa in Children, United States, 1999-2012. Journal of the Pediatric Infectious Diseases Society, 6(4), 352–359. https://doi.org/10.1093/jpids/piw064
Matos, E. C. O. de, Matos, H. J. de, Conceição, M. L., Rodrigues, Y. C., Carneiro, I. C. do R. S., & Lima, K. V. B. (2016). Clinical and microbiological features of infections caused by Pseudomonas aeruginosa in patients hospitalized in intensive care units. Revista Da Sociedade Brasileira de Medicina Tropical, 49(3), 305–311. https://doi.org/10.1590/0037-8682-0446-2015
Nathwani, D., Raman, G., Sulham, K., Gavaghan, M., & Menon, V. (2014). Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrobial Resistance and Infection Control, 3(1), 32. https://doi.org/10.1186/2047-2994-3-32
Peng, Y., Shi, J., Bu, T., Li, Y., Ye, X., Chen, X., & Yao, Z. (2015). Alarming and increasing prevalence of multidrug-resistant Pseudomonas aeruginosa among healthcare-associated infections in China: A meta-analysis of cross-sectional studies. Journal of Global Antimicrobial Resistance, 3(3), 155–160. https://doi.org/10.1016/j.jgar.2015.04.001
Samonis, G., Maraki, S., Karageorgopoulos, D. E., Vouloumanou, E. K., & Falagas, M. E. (2012). Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. European Journal of Clinical Microbiology & Infectious Diseases, 31(5), 695–701. https://doi.org/10.1007/s10096-011-1360-5
Ullah, W., Qasim, M., Rahman, H., Bari, F., Khan, S., Rehman, Z. U., Khan, Z., Dworeck, T., & Muhammad, N. (2016). Multi drug resistant Pseudomonas aeruginosa: Pathogen burden and associated antibiogram in a tertiary care hospital of Pakistan. Microbial Pathogenesis, 97, 209–212. https://doi.org/10.1016/j.micpath.2016.06.017
Wu, D. C., Chan, W. W., Metelitsa, A. I., Fiorillo, L., & Lin, A. N. (2011). Pseudomonas Skin Infection. American Journal of Clinical Dermatology, 12(3), 157–169. https://doi.org/10.2165/11539770-000000000-00000
Yoshimura, H., To, H., Narita, C., Tokushige, C., Kakudo, T., Otsubo, C., Yuki, M., Inamitsu, S., Shiotsuka, S., Takata, T., Watanabe, K., & Matsunaga, A. (2009). [Antimicrobial susceptibility patterns of Pseudomonas aeruginosa isolated from 2006 to 2008 in Fukuoka University Hospital]. The Japanese Journal of Antibiotics, 62(6), 502–508. http://www.ncbi.nlm.nih.gov/pubmed/20545085
Authors
Copyright (c) 2024 Ratna Kusumawati, Eko Budi Koendhori, Ni Made Mertaniasih, Irfan Arif Ikhwani, Dimas Firman Hidayat, Yelvi Levani, Ayu Lidya Paramitha
This work is licensed under a Creative Commons Attribution 4.0 International License.
Qanun Medika by FK UM Surabaya is liscence under Lisensi Creative Commons Atribusi 4.0 Internasional.