Positive Effect of Konjac Glucomannan on Lowering Blood Pressure in Hypertensive Wistar Rats

Bryan Anggara Putra (1), Sugeng Mashudi (2), Alfia Pradita Sari (3), Fany Risma Afriani (4), Yaya Sulthon Aziz (5), Tukimin bin Sansuwito (6)
(1) Universitas Muhammadiyah Ponorogo, Indonesia,
(2) Universitas Muhammadiyah Ponorogo, Indonesia,
(3) Universitas Muhammadiyah Ponorogo, Indonesia,
(4) Universitas Muhammadiyah Ponorogo, Indonesia,
(5) Islamic Institute of Sunan Giri Ponorogo, Indonesia,
(6) Lincoln University College of Malaysia, Malaysia

Abstract

Hypertension is a non-communicable disease that is currently a top priority for global health. Commonly offered anti-hypertensive pharmacological therapies such as ACE-inhibitors are known to have side effects in long-term use, unlike herbal glucomannan, which has been used as a treatment for patients with type 2 diabetes. The purpose of this study was to see what effect applying glucomannan supplements for 6 hours had on blood pressure parameters obtained from the wistar rat subjects who had hypertension. Twenty five male Wistar rats with normal systolic blood pressure (sBP) ± 110 mmHg were involved in the study; they received a 10% high salt diet for 14 days. They were divided into 4 groups: the positive control group G1 received captopril at 25 mg/kg of body weight and the treatment groups G2  50 mg KGM. Blood pressure measurement using sphygmonanometers with diastolic blood pressure (dBP) is the exclusion criterion of the study. Data analysis is done with a paired sample t-test. Blood pressure in each group decreased after 6 hours of intervention, but the most significant results were obtained in the G5 group that received glucomannan 100 mg/kg bb. In conclusion, Glucomannan can lower blood pressure; this potential is the same as that of red ginger, which modulates the production of angiotensin-corventing enzymes.

Full text article

Generated from XML file

References

Ariestanti, C. A., Seechamnanturakit, V., Harmayani, E., & Wichienchot, S. (2019). Optimization on production of konjac oligo‐glucomannan and their effect on the gut microbiota. Food Science & Nutrition, 7(2), 788–796. https://doi.org/10.1002/fsn3.927

Astutik, E., Puspikawati, S. I., Dewi, D. M. S. K., Mandagi, A. M., & Sebayang, S. K. (2020). Prevalence and Risk Factors of High Blood Pressure among Adults in Banyuwangi Coastal Communities, Indonesia. Ethiopian Journal of Health Sciences, 30(6), 941–950. https://doi.org/10.4314/ejhs.v30i6.12

Behera, S. S., & Ray, R. C. (2016). Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. International Journal of Biological Macromolecules, 92, 942–956. https://doi.org/10.1016/j.ijbiomac.2016.07.098

Carey, R. M., Muntner, P., Bosworth, H. B., & Whelton, P. K. (2018). Prevention and Control of Hypertension: JACC Health Promotion Series. Journal of the American College of Cardiology, 72(11), 1278–1293. https://doi.org/10.1016/j.jacc.2018.07.008

Devaraj, R. D., Reddy, C. K., & Xu, B. (2019). Health-promoting effects of konjac glucomannan and its practical applications: A critical review. International Journal of Biological Macromolecules, 126, 273–281. https://doi.org/10.1016/j.ijbiomac.2018.12.203

Fang, Y., Ma, J., Lei, P., Wang, L., Qu, J., Zhao, J., Liu, F., Yan, X., Wu, W., Jin, L., Ji, H., & Sun, D. (2023). Konjac Glucomannan: An Emerging Specialty Medical Food to Aid in the Treatment of Type 2 Diabetes Mellitus. Foods (Basel, Switzerland), 12(2). https://doi.org/10.3390/foods12020363

Fountain, J. H., Kaur, J., & Lappin, S. L. (2023). Physiology, Renin Angiotensin System. In StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/33875979

Genovesi, S., Giussani, M., Orlando, A., Lieti, G., Viazzi, F., & Parati, G. (2022). Relationship between endothelin and nitric oxide pathways in the onset and maintenance of hypertension in children and adolescents. Pediatric Nephrology, 37(3), 537–545. https://doi.org/10.1007/s00467-021-05144-2

Guo, K., Yao, Z., & Yang, T. (2022). Intestinal microbiota-mediated dietary fiber bioavailability. Frontiers in Nutrition, 9, 1003571. https://doi.org/10.3389/fnut.2022.1003571

Hanifah, N., Achmad, Y. F., Humaira, A., & Salasia, S. I. O. (2021). Red ginger-extract nanoemulsion modulates high blood pressure in rats by regulating angiotensin-converting enzyme production. Veterinary World, 14(1), 176–181. https://doi.org/10.14202/vetworld.2021.176-181

Herman, L. L., Padala, S. A., Ahmed, I., & Bashir, K. (2023). Angiotensin-Converting Enzyme Inhibitors (ACEI). In StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/16479034

Ho, H. V. T., Jovanovski, E., Zurbau, A., Blanco Mejia, S., Sievenpiper, J. L., Au-Yeung, F., Jenkins, A. L., Duvnjak, L., Leiter, L., & Vuksan, V. (2017). A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B ,. The American Journal of Clinical Nutrition, 105(5), 1239–1247. https://doi.org/10.3945/ajcn.116.142158

Hong, D., & Shan, W. (2021). Improvement in Hypertension Management with Pharmacological and Non- Pharmacological Approaches: Current Perspectives. Current Pharmaceutical Design, 27(4), 548–555. https://doi.org/10.2174/1381612826666200922153045

Iqbal, A. M., & Jamal, S. F. (2023). Essential Hypertension. In StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/2025703

Jiang, M., Li, H., Shi, J.-S., & Xu, Z.-H. (2018). Depolymerized konjac glucomannan: preparation and application in health care. Journal of Zhejiang University. Science. B, 19(7), 505–514. https://doi.org/10.1631/jzus.B1700310

Keithley, J. K., Swanson, B., Mikolaitis, S. L., DeMeo, M., Zeller, J. M., Fogg, L., & Adamji, J. (2013). Safety and Efficacy of Glucomannan for Weight Loss in Overweight and Moderately Obese Adults. Journal of Obesity, 2013, 1–7. https://doi.org/10.1155/2013/610908

Khalil, H., & Zeltser, R. (2023). Antihypertensive Medications. In StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/26724178

Kjeldsen, S. E. (2018). Hypertension and cardiovascular risk: General aspects. Pharmacological Research, 129, 95–99. https://doi.org/10.1016/j.phrs.2017.11.003

Marte, F., Sankar, P., & Cassagnol, M. (2023). Captopril. In StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/30480768

Mills, K. T., Stefanescu, A., & He, J. (2020). The global epidemiology of hypertension. Nature Reviews. Nephrology, 16(4), 223–237. https://doi.org/10.1038/s41581-019-0244-2

Miyamoto, J., Kasubuchi, M., Nakajima, A., Irie, J., Itoh, H., & Kimura, I. (2016). The role of short-chain fatty acid on blood pressure regulation. Current Opinion in Nephrology and Hypertension, 25(5), 379–383. https://doi.org/10.1097/MNH.0000000000000246

Oparil, S., Acelajado, M. C., Bakris, G. L., Berlowitz, D. R., Cífková, R., Dominiczak, A. F., Grassi, G., Jordan, J., Poulter, N. R., Rodgers, A., & Whelton, P. K. (2018). Hypertension. Nature Reviews. Disease Primers, 4, 18014. https://doi.org/10.1038/nrdp.2018.14

Ozemek, C., Tiwari, S., Sabbahi, A., Carbone, S., & Lavie, C. J. (2020). Impact of therapeutic lifestyle changes in resistant hypertension. Progress in Cardiovascular Diseases, 63(1), 4–9. https://doi.org/10.1016/j.pcad.2019.11.012

Peltzer, K., & Pengpid, S. (2018). The Prevalence and Social Determinants of Hypertension among Adults in Indonesia: A Cross-Sectional Population-Based National Survey. International Journal of Hypertension, 2018, 5610725. https://doi.org/10.1155/2018/5610725

Pillay, R., Chemban, F. M., Pillay, V. V, & Rathish, B. (2020). Little Known Dangers of an Exotic Poisonous Fruit: Lessons From Two Cases of Konjac Ingestion. Cureus, 12(12), e11972. https://doi.org/10.7759/cureus.11972

Sun, Y., Xu, X., Wu, Z., Zhou, H., Xie, X., Zhang, Q., Liu, R., & Pang, J. (2023). Structure, Merits, Gel Formation, Gel Preparation and Functions of Konjac Glucomannan and Its Application in Aquatic Food Preservation. Foods, 12(6), 1215. https://doi.org/10.3390/foods12061215

Sun, Y., Xu, X., Zhang, Q., Zhang, D., Xie, X., Zhou, H., Wu, Z., Liu, R., & Pang, J. (2023). Review of Konjac Glucomannan Structure, Properties, Gelation Mechanism, and Application in Medical Biology. Polymers, 15(8), 1852. https://doi.org/10.3390/polym15081852

Takigami, S. (2021). Konjac glucomannan. In Handbook of Hydrocolloids (pp. 563–577). Elsevier. https://doi.org/10.1016/B978-0-12-820104-6.00001-2

Wan, X., Wei, L., Zhang, W., Lei, Y., Kong, Q., & Zhang, B. (2022). Production, characterization, and prebiotic activity of oligosaccharides from konjac glucomannan by Bacillus amyloliquefaciens WX-1. Journal of Functional Foods, 88, 104872. https://doi.org/10.1016/j.jff.2021.104872

Watanabe, H., Martini, A. G., Brown, E. A., Liang, X., Medrano, S., Goto, S., Narita, I., Arend, L. J., Sequeira-Lopez, M. L. S., & Gomez, R. A. (2021). Inhibition of the renin-angiotensin system causes concentric hypertrophy of renal arterioles in mice and humans. JCI Insight, 6(24). https://doi.org/10.1172/jci.insight.154337

Weng, J., Chen, M., Shi, B., Liu, D., Weng, S., & Guo, R. (2023). Konjac glucomannan defends against high-fat diet-induced atherosclerosis in rabbits by promoting the PI3K/Akt pathway. Heliyon, 9(2), e13682. https://doi.org/10.1016/j.heliyon.2023.e13682

Xu, C., Yu, C., Yang, S., Deng, L., Zhang, C., Xiang, J., & Shang, L. (2023). Effects of Physical Properties of Konjac Glucomannan on Appetite Response of Rats. Foods, 12(4), 743. https://doi.org/10.3390/foods12040743

Yan, Y., Zhou, A., Carrell, R. W., & Read, R. J. (2019). Structural basis for the specificity of renin-mediated angiotensinogen cleavage. The Journal of Biological Chemistry, 294(7), 2353–2364. https://doi.org/10.1074/jbc.RA118.006608

Yoshida, A., Kimura, T., Tsunekawa, K., Araki, O., Ushiki, K., Ishigaki, H., Shoho, Y., Suda, I., Hiramoto, S., & Murakami, M. (2020). Glucomannan Inhibits Rice Gruel-Induced Increases in Plasma Glucose and Insulin Levels. Annals of Nutrition and Metabolism, 76(4), 259–267. https://doi.org/10.1159/000508674

Zhang, Z., Zhang, Y., Tao, X., Wang, Y., Rao, B., & Shi, H. (2023). Effects of Glucomannan Supplementation on Type II Diabetes Mellitus in Humans: A Meta-Analysis. Nutrients, 15(3). https://doi.org/10.3390/nu15030601

Zhou, B., Carrillo-Larco, R. M., Danaei, G., Riley, L. M., Paciorek, C. J., Stevens, G. A., Gregg, E. W., Bennett, J. E., Solomon, B., Singleton, R. K., Sophiea, M. K., Iurilli, M. L., Lhoste, V. P., Cowan, M. J., Savin, S., Woodward, M., Balanova, Y., Cifkova, R., Damasceno, A., … Ezzati, M. (2021). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. The Lancet, 398(10304), 957–980. https://doi.org/10.1016/S0140-6736(21)01330-1

Authors

Bryan Anggara Putra
Sugeng Mashudi
sugengmashudi@umpo.ac.id (Primary Contact)
Alfia Pradita Sari
Fany Risma Afriani
Yaya Sulthon Aziz
Tukimin bin Sansuwito
Putra, B. A., Mashudi, S., Sari, A. P., Afriani, F. R., Aziz, Y. S., & Sansuwito, T. bin. (2024). Positive Effect of Konjac Glucomannan on Lowering Blood Pressure in Hypertensive Wistar Rats. Qanun Medika - Medical Journal Faculty of Medicine Muhammadiyah Surabaya, 8(02). https://doi.org/10.30651/jqm.v8i02.21297

Article Details

No Related Submission Found