Perbandingan Elman Recurrent Neural Networks, Backpropagation Neural Networks, dan Exponential Smoothing dalam Peramalan Produksi Palawija
Abstract
Full text article
References
Abraham, B., & Ledolter, J. (2005). Statistical methods for forecasting. New Jersey: Wiley-Interscience.
Afrianty, I., et al. (2018). Penerapan jaringan syaraf tiruan Elman Recurrent Neural Network untuk prediksi penjualan pilus. Seminar Nasional Teknologi Informasi, Komunikasi, dan Industri (SNTIKI-10). Pekanbaru: UIN Sultan Syarif Kasim Riau.
Aktual kalsel. (2019). Satu prioritasi pembangunan di Tanah Laut. Retrieved September 1, 2020, from http://aktualkalsel.com/2019/09/23/sektor-pertanian-merupakan-salah-satu-prioritas-pembangunan-di-tanah-laut/.
BPS Kabupaten Tanah Laut. (2020). Tanaman pangan. Retrieved September 1, 2020, from http://tanahlautkab.bps.go.id.
Cynthia, E.P., et al. (2019). Penerapan metode elman recurrent neural network (ERNN) untuk peramalan penjualan. Journal of Education Informatic Technology and Science (JeITS), 1(2), 49-61.
Nugraha, K. A., Santoso, A. J., & Suselo, T. (2013). Algoritma backpropagation pada jaringan saraf tiruan untuk pengenalan pola wayang kulit. Seminar Nasional Informatika 2013 (semnas IF 2013). Yogyakarta: UPN Veteran Yogyakarta.
Apriliyani, N., Rhomadhona, H., & Permadi, J. (2018). Aplikasi peramalan jumlah siswa sekolah dasar di kabupaten Tanah Laut menggunakan metode holt’s double exponential smoothing. Jurnal Sustainable: Jurnal Hasil Penelitian dan Industri Terapan, 7(2), 64-69. https://doi.org/10.31629/sustainable.v7i2.623.
Radjabaycolle, J., & Pulungan, R. (2016). Prediksi penggunaan bandwidth menggunakan elman recurrent neural network. Barekeng Jurnal Ilmu Matematika dan Terapan, 10(2), 127-135.
Safitri, T., Dwidayati, N., & Sugiman. (2017). Perbandingan peramalan menggunakan metode exponential smoothing holt-winters dan ARIMA. UNNES Journal of Mathematics, 6(1), 48-58.
Salman, A.G., & Prasetio, Y.L. (2011). Implementasi jaringan syaraf tiruan recurrent menggunakan gradient descent adaptive learning rate and momentum untuk pendugaan curah hujan. ComTech: Computer, Mathematics and Engineering Applications, 2(1), 23-35.
Sihabuddin, A., Rosadi, D., & Utami, S. (2017). An empirical comparative forecast accuracy of exponential smoothing and nonlinear autoregressive models on six major rates. International Journal of Computer Science and Information Security (IJCSIS), 15(1), 670-672.
Suryani, I., & Wahono, R. S. (2015). Penerapan exponential smoothing untuk transformasi data dalam meningkatkan akurasi neural network pada prediksi harga emas. Journal of Intelligent Systems, 1(2), 67-75.
Wanto, A., & Windarto, A. P. (2017). Analisis prediksi indeks harga konsumen berdasarkan kelompok kesehatan dengan menggunakan metode backpropagation. Sinkron Publikasi Jurnal & Penelitian Teknik Informatika, 2(2), 37-43.
Wisesa, L. (2018). Produksi pertanian Indonesia BPS 1993-2015 produksi beberapa komoditi pertanian dalam ton. Retrieved August 1, 2020 from www.kaggle.com
Wong, K., et al. (2019). Prediksi tingkat inflasi dengan menggunakan metode backpropagation neural network. Sains, Aplikasi, Komputasi dan Teknologi Informasi, 1(2), 8-13.
Zhang, X., et al. (2013). Comparative study of four time series methods in forecasting typhoid fever incidence in China. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0063116.
Authors
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published workÂ