Transformasi Patologi Klinik melalui Kecerdasan Buatan: Sebuah Tinjauan Pustaka Sistematis

Penulis

  • Nabil Salim Ambar Departemen Patologi Klinik, Fakultas Kedokteran Universitas Muhammadiyah Surabaya
  • Muhamad Reza Utama Medical Education Unit, Fakultas Kedokteran Universitas Muhammadiyah Surabaya
  • Hartono Kahar Departemen Patologi Klinik, Fakultas Kedokteran Universitas Airlangga Surabaya

DOI:

https://doi.org/10.30651/jmu.v1i3.24771

Kata Kunci:

Kecerdasan Buatan, Patologi Klinik, Diagnostik Digital, Pengobatan Presisi

Abstrak

Kecerdasan buatan (Artificial Intelligence/AI) telah mengalami perkembangan signifikan dalam bidang patologi klinik selama dekade terakhir. AI mendukung analisis data kompleks dalam histopatologi, meningkatkan efisiensi diagnosis, dan mempercepat pengambilan keputusan klinis. Artikel ini bertujuan untuk mengulas peran AI dalam patologi klinik, termasuk penerapannya dalam diagnostik, prediksi klinis, dan personalisasi pengobatan. Metode yang digunakan adalah tinjauan pustaka sistematis dengan mencakup literatur dari database utama dalam 10 tahun terakhir. Hasil menunjukkan bahwa AI mampu meningkatkan akurasi diagnostik hingga 96,3% dan spesifisitas hingga 93,3%, serta mempercepat workflow klinis. Meskipun demikian, terdapat tantangan seperti regulasi, etika, dan kesenjangan digitalisasi yang perlu diatasi. AI menawarkan peluang besar untuk transformasi patologi klinik menuju era pengobatan presisi.

Referensi

Chang, H., Jung, C., Woo, J., et al. (2018). Artificial Intelligence in Pathology. Journal of Pathology and Translational Medicine, 53(1): 1-12. Available at: https://doi.org/10.4132/jptm.2018.12.16.

Rakha, E., Toss, M., Shiino, S., et al. (2020). Current and future applications of artificial intelligence in pathology: a clinical perspective. Journal of Clinical Pathology, 74: 409-414. Available at: https://doi.org/10.1136/jclinpath-2020-206908.

Colling, R., Pitman, H., Oien, K., et al. (2019). Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice. The Journal of Pathology, 249: 1-12. Available at: https://doi.org/10.1002/path.5310.

Kumar, K. S., Miskovic, V., Blasiak, A., et al. (2023). Artificial Intelligence in Clinical Oncology: From Data to Digital Pathology and Treatment. American Society of Clinical Oncology Educational Book, 43, e390084. Available at: https://doi.org/10.1200/EDBK_390084.

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. Available at: https://doi.org/10.1371/journal.pmed.1000097.

McGenity, C., Clarke, E. L., Jennings, C., et al. (2023). Diagnostic Test Accuracy of AI in Pathology. ArXiv. Available at: https://doi.org/10.48550/arXiv.2306.07999.

Cifci, D., Veldhuizen, G. P., Foersch, S., et al. (2023). Computational Pathology of Cancer. Annual Review of Cancer Biology. Available at: https://doi.org/10.1146/annurev-cancerbio-061521-092038.

McGenity, C., Clarke, E. L., Jennings, C., et al. (2023). Diagnostic Test Accuracy of AI in Pathology. ArXiv. Available at: https://doi.org/10.48550/arXiv.2306.07999.

Chang, H., Jung, C., Woo, J., et al. (2018). Artificial Intelligence in Pathology. Journal of Pathology and Translational Medicine, 53(1): 1-12. Available at: https://doi.org/10.4132/jptm.2018.12.16.

Rakha, E., Toss, M., Shiino, S., et al. (2020). Current and future applications of artificial intelligence in pathology: a clinical perspective. Journal of Clinical Pathology, 74: 409-414. Available at: https://doi.org/10.1136/jclinpath-2020-206908.

Lai, B., Fu, J., Zhang, Q., et al. (2023). AI in Cancer Pathology: Challenge to Meet Increasing Needs. International Journal of Oncology. Available at: https://doi.org/10.3892/ijo.2023.5555.

Colling, R., Pitman, H., Oien, K., et al. (2019). Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice. The Journal of Pathology, 249: 1-12. Available at: https://doi.org/10.1002/path.5310.

Cifci, D., Veldhuizen, G. P., Foersch, S., et al. (2023). Computational Pathology of Cancer. Annual Review of Cancer Biology. Available at: https://doi.org/10.1146/annurev-cancerbio-061521-092038.

Homeyer, A., Lotz, J., Schwen, L. O., et al. (2021). Artificial Intelligence in Pathology: From Prototype to Product. Journal of Pathology Informatics, 12. Available at: https://doi.org/10.4103/JPI.JPI_84_20.

Tizhoosh, H. & Pantanowitz, L. (2018). Artificial Intelligence and Digital Pathology: Challenges and Opportunities. Journal of Pathology Informatics, 9: 1-12. Available at: https://doi.org/10.4103/jpi.jpi_53_18.

Bera, K., Schalper, K., Rimm, D., et al. (2019). Artificial intelligence in digital pathology: New tools for diagnosis and precision oncology. Nature Reviews Clinical Oncology, 16: 703-715. Available at: https://doi.org/10.1038/s41571-019-0252-y.

Cheng, J., Abel, J., Balis, U., et al. (2020). Challenges in the development, regulation of Artificial Intelligence in Anatomic Pathology. The American Journal of Pathology, 190(10): 1951-1960. Available at: https://doi.org/10.1016/j.ajpath.2020.10.018.

Kumar, K. S., Miskovic, V., Blasiak, A., et al. (2023). Artificial Intelligence in Clinical Oncology: From Data to Digital Pathology and Treatment. American Society of Clinical Oncology Educational Book, 43, e390084. Available at: https://doi.org/10.1200/EDBK_390084.

Reis-Filho, J. & Kather, J. N. (2023). Overcoming the Challenges to Implementation of Artificial Intelligence in Pathology. Journal of the National Cancer Institute. Available at: https://doi.org/10.1093/jnci/djad048.

Xing, F., Zhang, X., & Cornish, T. C. (2021). Artificial Intelligence for Pathology. Digital Pathology and Computing, 2: 183-221. Available at: https://doi.org/10.1016/B978-0-12-821259-2.00011-9.

Calderaro, J. & Kather, J. N. (2020). Artificial intelligence-based pathology for gastrointestinal and hepatobiliary cancers. Gut, 70: 1183-1193. Available at: https://doi.org/10.1136/gutjnl-2020-322880.

Aneja, S., Chang, E., & Omuro, A. (2019). Applications of artificial intelligence in neuro-oncology. Current Opinion in Neurology. Available at: https://doi.org/10.1097/WCO.0000000000000761.

Ács, B. & Hartman, J. (2020). Next generation pathology: Artificial intelligence enhances histopathology practice. The Journal of Pathology, 250. Available at: https://doi.org/10.1002/path.5343.

Jiang, Y., Yang, M., Wang, S., et al. (2020). Emerging Role of Deep Learning-Based Artificial Intelligence in Tumor Pathology. Cancer Communications, 40: 154-166. Available at: https://doi.org/10.1002/cac2.12012.

Liu, Y., Han, D., Parwani, A., et al. (2023). Applications of Artificial Intelligence in Breast Pathology. Archives of Pathology & Laboratory Medicine. Available at: https://doi.org/10.5858/arpa.2022-0457-RA.

Kim, I., Kang, K., Song, Y., et al. (2022). Application of Artificial Intelligence in Pathology: Trends and Challenges. Diagnostics, 12(11). Available at: https://doi.org/10.3390/diagnostics12112794.

Kann, B., Hosny, A., & Aerts, H. (2021). Artificial intelligence for clinical oncology. Cancer Cell, 39(5): 767-771. Available at: https://doi.org/10.1016/j.ccell.2021.04.002.

Steiner, D. F., Chen, P. H., Mermel, C. H., et al. (2020). Closing the translation gap: AI applications in digital pathology. Biochimica et Biophysica Acta Reviews on Cancer, 188452. Available at: https://doi.org/10.1016/j.bbcan.2020.188452.

Lin, F., Weng, S., & Huang, X. (2023). Digital pathology and artificial intelligence as the next chapter in diagnostic hematopathology. Seminars in Diagnostic Pathology, 40(1): 45-55. Available at: https://doi.org/10.1053/j.semdp.2023.02.001.

Yang, Z., Zhang, Y., & Lu, H. (2023). Preparing Data for Artificial Intelligence in Pathology with Clinical-Grade Performance. Diagnostics, 13(19): 1-14. Available at: https://doi.org/10.3390/diagnostics13193115.

Unduhan

Diterbitkan

2024-12-06