Peramalan Jumlah Penderita Campak Klinis Di Kota Surabaya Menggunakan Metode ARIMA

Penulis

  • Kharis Putra Indrayatna Departemen Biostatistika, Program Studi Kesehatan Masyarakat, Fakultas Kesehatan Mayarakat, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.30651/jkm.v4i2.2048

Kata Kunci:

Forecasting, ARIMA, Measles

Abstrak

Objective: Forecasting is the process of making predictions of the future based on past, needed to determine when the occasion will occur,then the right action can be taken. ARIMA mehthod is a very strong aprroach model for time series analysis. ARIMA models can provide precise study. ARIMA models are very effective to applied in some cases where data show evidence of non-stationarity, shown by the ACF plot which drops exponentially. The ARIMA method is chosen because this model is suitable for all data types including stationary and non-stationary data. If the data is not stationer, where an initial differencing step can be applied to eliminate the non-stationarity. Measles is a highly contagious disease caused by a virus, 90% of children who are not immune can be affected by measles. Forecasting the number of measles sufferers in the city of Surabaya in 2018-2019 is very necessary to see the increasing trend of measles sufferers in the city of Surabaya.

Methods: This type of research is non-reactive research. The population in this study is the total number of Clinical Measles sufferers recorded in the Surabaya City Health Office every month in the period between 2012 and 2017. The design of this study is a time series research design, the dependent variable is the number of measles sufferers, whereas the independent variable is time.

Results: This study obtained ARIMA model forecasting for the next 2 years amounting to 407 cases in 2018 and 584 cases in 2019.

Conclusion: The results of forecasting measles desease that happened in Surabaya have decreased in 2018, from 428 cases that occurred in 2017 to 407 cases, and can be estimated in 2019 to increase to 584 cases. The results of the forecasting can be used as a basis for running more specific programs based on problems.



Biografi Penulis

Kharis Putra Indrayatna, Departemen Biostatistika, Program Studi Kesehatan Masyarakat, Fakultas Kesehatan Mayarakat, Universitas Airlangga, Surabaya, Indonesia

Departemen Biostatistika, Program Studi Kesehatan Masyarakat, Fakultas Kesehatan Mayarakat, Universitas Airlangga, Surabaya, Indonesia

Referensi

Diana, H., & Raharjo, C. D. 2015. Sistem Pendukung Keputusan Untuk Forecasting Penjualan di Toko Sumber Saudara. Prosiding SNATIF, 275-280. Diakses melalui: jurnal.umk.ac.id/index.php/SNA/article/download/334/351 [Diakses pada 20 September 2018]

Giarsawan, N., Asmara, W. S., & Yulianti, A. E. (2014). Faktor-Faktor yang Mempengaruhi Kejadian Campak di Wilayah Puskesmas Tejakula I Kecamatan Tejakula Kabupaten Buleleng Tahun 2012. Jurnal kesehatan lingkungan, 4(2), 140-145. Diakses melalui : http://www.poltekkes-denpasar.ac.id/files/JURNAL%20KESEHATAN%20LINGKUNGAN/V4N2/Nyoman%20Giarsawan%B9,%20I%20Wayan%20Suarta%20Asmara%B2,%20Anysiah%20Elly%20Yulianti%B3.pdf [diakses pada : 8-10-2018]

Meilani, R., & Budiati, R. E. (2013). Faktor-Faktor yang Mempengaruhi Kejadian Campak di Puskemas Purwosari Kabupaten Kudus. Jurnal Keperawatan dan Kesehatan Masyarakat Cendekia Utama, 2(1). Diakses melalui : jurnal.stikescendekiautamakudus.ac.id/index.php/stikes/article/download/19/95 [Diakses pada : 7-10-2018]

Reihana. 2014. Profil Kesehatan Provinsi Lampung Tahun 2013, Lampung: Dinas Kesehatan Provinsi Lampung. 2014. Diakses melalui: http://www.depkes.go.id/resources/download/profil/PROFIL_KES_PROVINSI_2014/08_Lampung_2014.pdf [Diakses pada :25 Maret 2018]

Supriyantoro. 2013. Profil Kesehatan Indonesia Tahun 2012,Jakarta: Kementerian Kesehatan RI. 2013. Diakses melalui: http://www.depkes.go.id/resources/download/pusdatin/profil-kesehatan-indonesia/profil-kesehatan-indonesia-2013.pdf [Diakses pada :25 Maret 2018]

Sutarjo, Untung Suseno. 2015. Profil Kesehatan Indonesia Tahun 2014,Jakarta: Kementerian Kesehatan RI. 2015. Diakses melalui: http://www.depkes.go.id/resources/download/pusdatin/profil-kesehatan-indonesia/profil-kesehatan-indonesia-2014.pdf [Diakses pada :25 Maret 2018]

Sutarjo, Untung Suseno. 2016. Profil Kesehatan Indonesia Tahun 2015,Jakarta: Kementerian Kesehatan RI. 2016. Diakses melalui: http://www.depkes.go.id/resources/download/pusdatin/profil-kesehatan-indonesia/profil-kesehatan-Indonesia-2015.pdf [Diakses pada :23 Maret 2018]

Rachmanita, Febria. 2017. Profil Kesehatan Kota Surabaya Tahun 2016,Surabaya: Dinas Kesehatan Kota Surabaya. 2017. Diakses melalui: http://www.depkes.go.id/resources/download/profil/PROFIL_KAB_KOTA_2016/3578_Jatim_Kota_Surabaya_2016.pdf [Diakses pada :25 Maret 2018]

Karina, A. D. (2015). Penerapan Algoritma Regresi Linier Berganda Pada Data Pabrik Gula Rendeng Kudus. Skripsi, Fakultas Ilmu Komputer. Diakses melalui: http://eprints.dinus.ac.id/12789/1/jurnal_12969.pdf [Diakses pada : 24 Juli 2018]

Makridakis, Spyros. 1999. Metode dan Aplikasi Peramalan Vol 2 Jilid 1. Terjemahan Ir.Untung Sus Andriyanto, M.Sc. dan Ir.Abdul Basith, M.Sc. Jakarta: Erlangga.

Retnowati. 2006. Penerapan Metode Trend Moment Dalam ForeCast Penjualan Beton ReadyMix Di PT. X, Mojokerto. Jurnal. STIE Mahardika (Vol. 13 No 1). Diakses melalui: https://caridokumen.com/download/penerapan-metode-trend-moment-dalam-forecast-penjualan-beton-readymix-di-pt-x-mojokerto-_5a46dfa8b7d7bc7b7a2470b1_pdf [Diakses pada; 25 September 2018]

Setiawan, I Made. 2008. Penyakit Campak . Jakarta: Sugeng Seto.

Salim, L. A., & Qoyyimah, M. A. 2007. Perbandingan Analisis Trend dan Holt Double Eksponensial Smoothing dalam Meramalkan Angka Kematian Bayi di Jawa Timur. Indonesian Journal of Public Health, 3(3). Diakses melalui: http://download.portalgaruda.org/article.php?article=17930&val=1114 [Diakses pada : 25 September 2018]

Unduhan

Diterbitkan

2019-07-11

Terbitan

Bagian

Artikel