Smart-Design Instalasi Digester Biogas Skala Komunal Pesantren High Temperature
Abstract
Abstract
Biogas is a flammable gas produced by the fermentation of organic materials by anaerobic bacteria (bacteria that live in airtight conditions). In general all types of organic matter can be processed to produce biogas, however only homogeneous organic matter (solid, liquid) such as feces and urine (urine) of human livestock are suitable for simple biogas systems. In areas where there are many food processing industries, such as tofu, tempeh, fish, pindang or brem, they can integrate their waste channels into the biogas system, so that industrial waste does not pollute the surrounding environment. This is possible because the industrial waste mentioned above comes from homogeneous organic materials. Smoggy biogas fuel is a superior substitute for fuel oil or natural gas. This gas, produced in a process called anaerobic digestion, is a gas mixture of methane (CH4), carbon dioxide (CO2) and small amounts of nitrogen, ammonia, sulfur dioxide, hydrogen sulfide, and hydrogen. Naturally, this gas is formed in sewerage, garbage piles, lake or swamp beds. Mammals including humans produce biogas in their digestive system, bacteria in the digestive system produce biogas for the digestion of cellulose. Biomass which contains high water content such as animal manure and food processing waste is suitable for use as raw material for making biogas.
Â
Keywords: biogas, tecnologi disester, continous feeding, smart design, ipal
Â
Â
Abstrak
Biogas adalah gas mudah terbakar (flammable) yang dihasilkan oleh proses Fermentasi bahan-bahan organik oleh bakteri-bakteri anaerob (bakteri yang hidup dalam kondisi kedap udara). Pada umumnya semua jenis bahan organik bisa diproses untuk menghasilkan biogas, namun demikian hanya bahan organik (padat, cair) homogen seperti kotoran dan urine (air kencing) hewan ternak manusia cocok untuk sistem biogas sederhana. Di daerah yang banyak industri pemrosesan makanan antara lain tahu, tempe, ikan, pindang atau brem bisa menyatukan saluran limbahnya ke dalam sistem biogas, sehingga limbah industri tersebut tidak mencemari lingkungan di sekitarnya. Hal ini memungkinkan karena limbah industri tersebut diatas berasal dari bahan organik yang homogen. Bahan bakar biogas tidak menghasilkan asap merupakan suatu pengganti yang unggul untuk menggantikan bahan bakar minyak atau gas alam. Gas ini dihasilkan dala proses yang disebut pencernaan anaerob merupakan gas campuran metan (CH4) ,karbondioksida (CO2), dan sejumlah kecil nitrogen, amonia, sulfur dioksida, hidrogen sulfida, dan hidrogen. Secara alami, gas ini terbentuk pada limbah pembuangan air,tumpukan sampah, dasar danau atau rawa. Mamalia termasuk manusia menghasilkan biogas dalam sistem pencernaannya, bakteri dalam sistem pencernaan menghasilkan biogas untuk proses mencerna selulosa. Biomassa yang mengandung kadar air yang tinggi seperti kotoran hewan dan limbah pengolahan pangan cocok digunakan untuk bahan baku pembuatan biogas.
Â
Kata Kunci: biogas, teknologi disester, continous feeding, smart design, ipal
Full text article
References
Acaroglu, M., Aksoy, A. S., and Ogut, H. 1999. The potential of biomass and animal waste of Turkey and the possibilities of these as fuel in thermal generating stations. Energy Sources 21(4):339–345.
AGI (Antares Group Incorporated), T. R. Miles Technical Consulting, Inc., and Foster Wheeler Development Corporation. 1999. Economic and technical feasibility of energy production from poultry litter and nutrient filter biomass on the lower Delmarva Peninsula. http://www.nrbp.org.
Anonymous. 2000. Application of Waste Product for Agricultural Purposes, Danish Environmental Protection Agency.
http://www.ecop.ucl.ac.be7aebiom/article/biogas/biogas2.htm.
Bilgin, N., Bilir, M., Deniz, Y., and Karabay, E. 2002. Biogas in Turkey. Proceedings of Fourth National Clean Energy Symposium. 16–18 October, Istanbul, Turkey, pp. 1035–1040 (in Turkish).
Chambers, B. J., Lord, E. I., Nicholson, F. S., and Smith, K. A. 1999. Predicting nitrogen availability and losses following application of organic manures to arable land: MANNER. Soil Use and Management 15:137–143.
Berglund, M., and Börjesson, P. 2006. Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy. 30:254−266.
Becker, C., Döhler, H., Eckel, H., Fröba, N., Georgieva T., and Grube, J. 2007. Empirical Values for Biogas. 1st Ed. Germany: Darmstadt.
Cherubini, F., Birda, N., Cowie, A., Jungmeier, G., Schlamadinger, B., and WoessGallasch, S. 2009. Energy and greenhouse gas based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour. Conserv. Recycl. 53(8):434–447.
Cropgen. 2007. An Overall Energy Balance for Energy Production Taking Into Account Energy Inputs Associated with Farming. University of Vienna. EU’s 6th Framework Programm - Renewable energy from crops and agrowastes. Project no. SES6-CT-2004-50284, Vienna, Austria.
Cropgen. 2007 b. Life Cycle Energy Balance on a Number of Crop Species. University of Vienna. EU’s 6th Framework Programm- Renewable energy from crops and agrowastes. Project no. SES6-CT-2004-50284.
Cvetković, S., KaluÄ‘erović RadoiÄić, T., Vukadinović B., and KijevÄanin, M. 2014. Potentials and status of biogas as energy source in the Republic of Serbia. Renew. Sustain Energy Rev. 31:407–416.
Eastern Research Group. 2011. Protocol for quantifying and reporting the performance of anaerobic digestion systems for livestock manures.
Fuchsz, M., and Kohlheb, N. 2015. Comparison of the environmental effects of manure- and crop-based agricultural biogas plants using life cycle analysis. J. Clean Prod. 86:60–66.
Gerin, P. A., Vliegen, F., and Jossar, J. M. 2008. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour. Technol. 99:2620−2627.
Hall, C. A. S., Balogh, S., and Murphy, D. J. R. 2009. What is the minimum EROI that a sustainable society must have? Energies 2:25–47.
Havukainen, J. V., Uusitalo, V., Niskanen, A., Kapustina, V., and Horttanai, M. 2014. Evaluation of methods for estimating energy performance of biogas production. Renew. Energy. 66:232–240.
Junus, M., 1987, Teknik Membuat dan Memanfaatkan Unit Gas Bio, Fakultas Peternakan Universitas Brawijaya, Gadjah Mada University Press, Yogyakarta.
Ludwig Sasse-Borda, 1988, Biogas Plant Manual Book, A Publication of the Deutsches Zentrum †Entwicklungstechnologien – GATE in: Deutsche Gesellschaft †Technische Zusammenarbeit (GTZ)
Suyati, F., 2006, Perancangan Awal Instalasi Biogas Pada Kandang Terpencar Kelompok Ternak Tani Mukti Andhini Dukuh Butuh Prambanan Untuk Skala Rumah Tangga, Skripsi, Jurusan Teknik Fisika, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta.
Budiman, I (2019). Fragmented biogas governance in Indonesia. Wageningen University and Research. https://fapet.ugm.ac.id/new/id/potensi-ekonomi-kotoran-sapi-rp-643-triliuntahun.
Authors
The use of articles published by this journal is governed by the Creative Commons Attribution license as currently displayed on CC BY 4.0