Structural Performance Analysis of Post-Fire Reinforced Concrete Buildings Using Hammer Test Method and ETABS Modeling

Willy Susanto (1), Tegar Abdillah Ramadhan (2), Raudah Ahmad (3), Insan Kamil (4), Gusti Ahmad Firdaus (5)
(1) Jurusan Teknik Sipil, Politeknik Negeri Samarinda, Indonesia,
(2) Jurusan Teknik Sipil, Politeknik Negeri Samarinda, Indonesia,
(3) Jurusan Teknik Sipil, Politeknik Negeri Samarinda, Indonesia,
(4) Jurusan Teknik Sipil, Politeknik Negeri Samarinda, Indonesia,
(5) Inspektorat Daerah Kutai Kertanegara, Indonesia

Abstract

Reassessing the structural integrity of reinforced concrete buildings after a fire is crucial to ensure the continued operation of healthcare facilities. This study evaluates the structural performance of a multi-story hospital building that sustained significant fire damage by integrating non-destructive testing using a rebound hammer and finite element modeling in ETABS. The test results indicated substantial variations in residual concrete strength across structural elements: the average strengths of columns and beams were 25.95 MPa and 22.51 MPa, respectively, while floor slabs showed drastic reductions on fire-affected levels, ranging from 11.82 MPa to 51.42 MPa on unaffected floors. Structural modeling with these degraded material properties demonstrated that column stresses remained within acceptable limits, whereas 69% of the second-floor slabs and several beams on upper floors exceeded permissible stress thresholds. Consequently, the rehabilitation strategy prioritizes strengthening the floor slabs and enhancing beam capacity, while column replacement is not required. This approach enables cost- and time-efficient recovery without compromising structural safety.

Full text article

Generated from XML file

References

Annerel, E., Taerwe, L., & Vandevelde, P. (2011). Assessment of temperature increase and residual strength of concrete in fire exposed building structures. Fire Technology, 47(4), 935-950.

Bastami, M., & Baghbadrani, M. (2012). Evaluating the compressive strength of concrete containing slag using Schmidt rebound hammer. Journal of Structural Engineering and Geotechnics, 2(1), 1-8.

Behnam, B., & Ronagh, H. R. (2015). Behavior of moment-resisting tall steel structures exposed to a vertically traveling post-earthquake fire. Structural Design of Tall and Special Buildings, 24(6), 470-496.

Bisby, L. A., Gales, J. A., & Maluk, C. (2013). A contemporary review of large-scale non-standard structural fire testing. Fire Science Reviews, 2(1), 1-27.

Choe, G., Kim, G., Yoon, M., Hwang, E., Nam, J., & Guncunski, N. (2019). Effect of moisture migration and water vapor pressure build-up with the heating rate on concrete spalling type. Cement and Concrete Research, 116, 1-10.

Colombo, M., & Felicetti, R. (2007). New NDT techniques for the assessment of fire-damaged concrete structures. Fire Safety Journal, 42(6-7), 461-472.

Della Corte, G., Landolfo, R., & Mazzolani, F. M. (2003). Post-earthquake fire resistance of moment resisting steel frames. Fire Safety Journal, 38(7), 593-612.

Dwaikat, M. B., & Kodur, V. K. R. (2010). Fire induced spalling in high strength concrete beams. Fire Technology, 46(1), 251-274.

Ervine, A., Gillie, M., Stratford, T. J., & Pankaj, P. (2012). Thermal behaviour of heated concrete slabs. Engineering Structures, 43, 103-111.

Felicetti, R. (2014). Assessment of fire damage in concrete structures: New inspection procedures based on drill-resistance. In Proceedings of the 8th International Conference on Structures in Fire (pp. 1019-1026). Shanghai, China.

Felicetti, R., & Gambarova, P. G. (1998). Effects of high temperature on the residual compressive strength of high-strength siliceous concretes. ACI Materials Journal, 95(4), 395-406.

Foster, S. J., & Bisby, L. A. (2008). High temperature residual properties of externally-bonded FRP systems. In Proceedings of the 7th International Conference on FRP Composites in Civil Engineering (pp. 1-8). Vancouver, Canada.

Gales, J., Bisby, L. A., & Gillie, M. (2011). Unbonded post tensioned concrete in fire: A review of data from furnace tests and real fires. Fire Safety Journal, 46(4), 151-163.

Gernay, T., & Franssen, J.-M. (2015). A performance indicator for structures under natural fire. Engineering Structures, 100, 94-103.

Gernay, T., Millard, A., & Franssen, J.-M. (2016). A multiaxial constitutive model for concrete in the fire situation: Theoretical formulation. International Journal of Solids and Structures, 79, 32-42.

Hager, I. (2013). Behaviour of cement concrete at high temperature. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(1), 145-154.

Jeffers, A. E., Sotelino, E. D., & Balakrishnan, B. (2013). Nonlinear analysis of the response and failure of FRP-reinforced concrete columns exposed to fire. Journal of Composite Materials, 47(22), 2837-2854.

Khalaf, J., & Huang, Z. (2019). Analysis of the bond behaviour between prestressed strands and concrete in fire. Construction and Building Materials, 128, 12-23.

Kodur, V. K. R., & Agrawal, A. (2016). An approach for evaluating residual capacity of reinforced concrete beams exposed to fire. Engineering Structures, 110, 293-306.

Kodur, V. K. R., & Dwaikat, M. (2008). A numerical model for predicting the fire resistance of reinforced concrete beams. Cement and Concrete Composites, 30(5), 431-443.

Mostafaei, H., & Kabeyasawa, T. (2007). Axial-shear-flexure interaction approach for reinforced concrete columns. ACI Structural Journal, 104(2), 218-226.

Phan, L. T., & Carino, N. J. (2002). Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures. ACI Materials Journal, 99(1), 54-66.

Pournamazian, A., Samali, B., Shanian, A., Astaraki, F., & Perera, N. (2023). Experimental assessment of the fire resistance of post-fire concrete. Fire Technology, 59(2), 847-872.

Purkiss, J. A., & Li, L.-Y. (2013). Fire safety engineering design of structures (3rd ed.). CRC Press.

Quiel, S. E., & Garlock, M. E. M. (2010). Calculating the buckling strength of steel plates exposed to fire. Thin-Walled Structures, 48(9), 684-695.

Raut, N., & Kodur, V. (2011). Response of high-strength concrete columns under design fire exposure. Journal of Structural Engineering, 137(1), 69-79.

Seręga, S. (2021). Assessment and rehabilitation of a fire damaged reinforced concrete structure. Archives of Civil Engineering, 67(3), 451-467.

Tashan, J., & Al-Mahaidi, R. (2014). Detection of cracks in concrete strengthened with CFRP systems using infra-red thermography. Composites Part B: Engineering, 64, 116-125.

Wald, F., Chlouba, J., Uhlíř, A., Kallerová, P., & Štujberová, M. (2016). Temperatures during fire tests on structure and its prediction according to Eurocodes. Fire Safety Journal, 86, 1-6.

Zaharia, R., & Dubina, D. (2006). Stiffness of joints in steel frames designed to Eurocode 3. Journal of Constructional Steel Research, 62(3), 240-249.

Zaharia, R., & Pintea, D. (2009). Fire after earthquake analysis of steel moment resisting frames. International Journal of Steel Structures, 9(4), 275-284.

Authors

Willy Susanto
willysusanto@polnes.ac.id (Primary Contact)
Tegar Abdillah Ramadhan
Raudah Ahmad
Insan Kamil
Gusti Ahmad Firdaus
Susanto, W., Abdillah Ramadhan, T., Ahmad, R., Kamil, I., & Ahmad Firdaus, G. (2025). Structural Performance Analysis of Post-Fire Reinforced Concrete Buildings Using Hammer Test Method and ETABS Modeling . AGREGAT, 10(2), 1393–1404. https://doi.org/10.30651/ag.v10i2.29188

Article Details

No Related Submission Found