Pemanfaatan Limbah Pasir Sandblasting Sebagai Material Perkerasan Kaku

Samuel Layang (1), Thathit Suprayogi (2), Wiratno (3), Okta Meilawaty (4), Renna Jessica Sihombing (5), Frans Putra Ganesa (6)
(1) Prodi. Pendidikan Teknik Bangunan, FKIP, Universitas Palangka Raya, Indonesia,
(2) Program Studi Fisika, Universitas Palangka Raya, Indonesia,
(3) Program Studi Pendidikan Teknik Bangunan, FKIP, Universitas Palangka Raya, Indonesia,
(4) Jurusan Teknik Sipil, Universitas Palangka Raya, Indonesia,
(5) Program Studi Pendidikan Teknik Bangunan, FKIP, Universitas Palangka Raya, Indonesia,
(6) Program Studi Pendidikan Teknik Bangunan, FKIP, Universitas Palangka Raya, Indonesia

Abstrak

Penelitian ini bertujuan untuk mengetahui kuat tekan dan kuat lentur beton yang menggunakan limbah Pasir Sandblasting dan untuk mengetahui apakah beton yang menggunakan limbah Pasir Sandblasting dapat digunakan sebagai material perkerasan kaku.  Untuk mencapai tujuan tersebut dilakukan penelitian secara eksperimental di laboratorium dengan menggunakan benda uji balok yang berjumlah 10 buah. Agregat kasar yang digunakan merupakan gabungan dari Kerikil Banjarmasin dan Kerikil Merak dengan masing-masing proporsi 50%. Terdapat dua variasi campuran yaitu campuran beton yang menggunakan Pasir Tangkiling dan campuran beton yang menggunakan Pasir Sandblasting. Dari hasil pengujian diperoleh campuran beton yang menggunakan Pasir Tangkiling mempunyai kuat tekan rata-rata sebesar 22,57 MPa dan kuat lentur (fs) 36,33 kg/cm2. Campuran beton yang menggunakan Pasir Sandblasting mempunyai kuat tekan rata-rata sebesar 26,55 MPa dan kuat lentur (fs) 39,40 kg/cm2. Campuran beton dengan proporsi 50% Kerikil Banjarmasin dan 50% Kerikil Merak, baik yang menggunakan Pasir Tangkiling dan Pasir Sandblasting tidak memenuhi persyaratan untuk digunakan sebagai perkerasan kaku karena tidak memenuhi kuat lentur minimal 45 kg/cm2 sebagaimana yang disyaratkan.

Artikel teks lengkap

##article.generated_from_xml##

Referensi

ACI 211.1-91. (2002). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete.

Alifiadi, R., & Slamet, A. (2022). Utilization of Sandblasting Waste as an Alternative Material for Paving Blocks. Jurnal Multidisiplin Madani, 2(12), 4399–4407. https://doi.org/10.55927/mudima.v2i12.1911

Amelia, R., Suhendra, S., & Amalia, K. R. (2021). Hubungan Faktor-Faktor yang Mempengaruhi Kuat Tekan Beton. Jurnal Talenta Sipil, 4(2), 225. https://doi.org/10.33087/talentasipil.v4i2.79

Andrade, H. D., de Carvalho, J. M. F., Costa, L. C. B., da Fonseca Elói, F. P., do Carmo e Silva, K. D., & Peixoto, R. A. F. (2021). Mechanical performance and resistance to carbonation of steel slag reinforced concrete. Construction and Building Materials, 298, 123910. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.123910

Anrozi, R., & Trihadiningrum, Y. (2017). Kajian Teknologi dan Mekanisme Stabilisasi/Solidifikasi untuk Pengolahan Limbah B3. Jurnal Teknik ITS, 6(2). https://doi.org/10.12962/j23373539.v6i2.25134

ASTM C33/C33M − 18. (2010). Concrete Aggregates 1. i(C), 1–11. https://doi.org/10.1520/C0033

Ayuningtyas, U., Agus, M., Leopold, A., Adi, N., Aggraeni, P., Pribadi, T., Nugroho, A., & Tjahyo, N. (2022). Pemanfaatan Fly ash dan Bottom Ash sebagai Material Konstruksi Ramah Lingkungan dalam Rangka Mendukung Kriteria Bangunan Hijau. Seminar Nasional Penelitian Dan Pengabdian Pada Masyarakat 2022, 51–56.

BSI. (2002). SNI 03-2847-2002: Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung. In Badan Standardisasi Indonesia.

Firnanda, A., Kurniawandy, A., & Ermiyati. (2015). Kuat Tekan Beton dan Waktu Ikat Semen Portland Komposit (PCC). 3, 103–111.

Intara, I. W. (2014). Perbedaan Umur Pencapaian Kuat Tekan Beton Dari Perekat Semen OPC, PPC Dan PCC. Jurnal Logic, 14(2), 82–86.

Kang, S., Lee, S., & Lee, J. (2024). Thermal performance enhancement in two-phase closed thermosyphon with sandblasted evaporator surface. International Communications in Heat and Mass Transfer, 159, 108027. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2024.108027

Maharani, A., & Wasono, S. B. (2018). Perbandingan Perkerasan Kaku dan Perkerasan Lentur (Studi Kasus Ruas Jalan Raya Pantai Prigi – Popoh Kab. Tulungagung). Ge-STRAM: Jurnal Perencanaan Dan Rekayasa Sipil, 1(2), 89–94. https://doi.org/10.25139/jprs.v1i2.1202

Maulidianti, N. A., Mulyani, E., & Nuh, M. (2021). Identifikasi Konsep Green Construction Pada Perencanaan Gedung Perpustakaan Pusat Universitas Tanjungpura. JeLAST : Jurnal PWK, Laut, Sipil, Tambang, 8(1), 1–8. https://jurnal.untan.ac.id/index.php/JMHMS/article/view/44606

Niu, X., Elakneswaran, Y., & Hiroyoshi, N. (2024). Surface chemistry and radionuclide anion immobilisation potential of phosphoric acid-activated metakaolin-based geopolymers. Cement and Concrete Research, 181, 107549. https://doi.org/https://doi.org/10.1016/j.cemconres.2024.107549

Peraturan menteri Lingkungan Hidup RI Nomor 8 tahun 2010 Tentang Kriteria dan Sertifikasi Bangunan Ramah Lingkungan, 1 (2010).

Rahmat, Hendriyani, I., & Dito, R. D. (2017). Kajian Kuat Lentur Beton pada Perkerasan Kaku Jalan Tol Balikpapan-Samarinda. Media Ilmiah Teknik Sipil, 6(1), 50–60.

Rasol, M. A., Pérez-Gracia, V., Fernandes, F. M., Pais, J. C., Santos-Assunçao, S., Santos, C., & Sossa, V. (2020). GPR laboratory tests and numerical models to characterize cracks in cement concrete specimens, exemplifying damage in rigid pavement. Measurement, 158, 107662. https://doi.org/https://doi.org/10.1016/j.measurement.2020.107662

Rudawska, A., Danczak, I., Müller, M., & Valasek, P. (2016). The effect of sandblasting on surface properties for adhesion. International Journal of Adhesion and Adhesives, 70, 176–190. https://doi.org/https://doi.org/10.1016/j.ijadhadh.2016.06.010

SNI 4431, B. S. N. (2011). SNI 4431-2011 Cara Uji Kuat Lentur Beton Normal dengan Dua Titik Pembebanan. Badan Standar Nasional Indonesia, 1–16.

Tahir, M. F. M., Abdullah, M. M. A. B., Rahim, S. Z. A., Embong, R., Tajudin, M. A. F. M. A., Zailani, W. W. A., & Ghazali, C. M. R. (2025). 6 - Potential of geopolymers in rigid pavement application: materials, preparation, and basic properties. In M. M. Al Bakri Abdullah, R. Abd Razak, W. M. Wan Ibrahim, & M. A. A. Mohd Salleh (Eds.), Recent Developments of Geopolymer Materials (pp. 129–146). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-443-24068-3.00006-6

Van Damme, H. (2018). Concrete Material Science: Past, Present, and Future Innovations. Cement and Concrete Research, 112(May), 5–24. https://doi.org/10.1016/j.cemconres.2018.05.002

Wang, J., Li, H., Ma, C., Cai, C., & Wang, J. (2024). Effect of surface curing condition on the humidity field and moisture transfer in concrete. Construction and Building Materials, 411, 134701. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2023.134701

Pd T-14-2003 Perencanaan Perkerasan Jalan Beton Semen, 56 (2003).

Penulis

Samuel Layang
samuel.layang@ptb.upr.ac.id (Kontak utama)
Thathit Suprayogi
Wiratno
Okta Meilawaty
Renna Jessica Sihombing
Frans Putra Ganesa
Layang, S., Thathit Suprayogi, Wiratno, Okta Meilawaty, Renna Jessica Sihombing, & Frans Putra Ganesa. (2025). Pemanfaatan Limbah Pasir Sandblasting Sebagai Material Perkerasan Kaku. AGREGAT, 10(2), 1425–1431. https://doi.org/10.30651/ag.v10i2.27798

Rincian Artikel

No Related Submission Found