Collagen Type I and Type II Expression Evaluation on Cartilage Defect Regeneration Treated with Dwikora–Ferdiansyah–Lesmono–Purwati (DFLP) Scaffold Supplemented with Adipose–Derived Stem Cells (ASCs) or Secretome: An In-Vivo Study

Adrianto Prasetyo Perbowo, Dwikora Novembri Utomo, Lukas Widhiyanto, Primadenny Ariesa Airlangga, Purwati Purwati




Cell-based therapies such as Scaffold, stem cells, and secretome, are one of the alternatives to enhance the regeneration of hyaline-like cartilage in cases of cartilage defects. This study is an in-vivo experiment using animal models, in which we apply a composite of DFLP (Dwikora-Ferdiansyah-Lesmono-Purwati) Scaffold and Adipose-Derived Stem Cells (ASCs) or Secretome to an injury model on the distal femoral trochlea of New Zealand White Rabbits. The animals were divided into four groups: (1) control (K); (2) Scaffold only (S); (3) Scaffold + ASCs (SA); (4) Scaffold + Secretome (SS). Animals were terminated in the 12th week, and an immunohistochemistry (IHC) evaluation for Collagen type I and II were done. Statistical analysis shows that collagen type I IHC between groups shows no significant difference (p = 0.546). Collagen type II IHC shows significant difference between groups (p = 0,016). The findings in this study showed that Scaffold + ASCs group and Scaffold + Secretome have better collagen type II expression compared to the control group. DFLP Scaffold composite with ASCs or Secretome shows potential for cartilage regeneration therapy by increasing type II collagen expression as in hyaline-like cartilage which may be used for regenerative therapy for cartilage defects.


Keywords             : DFLP Scaffold; Adipose-Derived Stem Cells (ASCs); Secretome; Collagen Type I; Collagen Type II

Correspondence    :


DFLP Scaffold; Adipose-Derived Stem Cells (ASCs); Secretome; Collagen Type I; Collagen Type II

Full Text:



Bedi, A., Feeley, B. T., & Williams, R. J., 3rd. (2010). Management of articular cartilage defects of the knee. J Bone Joint Surg Am, 92(4), 994-1009. doi:10.2106/JBJS.I.00895

Beer, L., Mildner, M., & Ankersmit, H. J. (2017). Cell secretome based drug substances in regenerative medicine: when regulatory affairs meet basic science. Ann Transl Med, 5(7), 170. doi:10.21037/atm.2017.03.50

Buttgereit, F., Burmester, G. R., & Bijlsma, J. W. (2015). Non-surgical management of knee osteoarthritis: where are we now and where do we need to go? RMD Open, 1(1), e000027. doi:10.1136/rmdopen-2014-000027

Fritz, J., Janssen, P., Gaissmaier, C., Schewe, B., & Weise, K. (2008). Articular cartilage defects in the knee--basics, therapies and results. Injury, 39 Suppl 1, S50-57. doi:10.1016/j.injury.2008.01.039

Fukuda, K., Chikama, T., Nakamura, M., & Nishida, T. (1999). Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. Cornea, 18(1), 73-79.

Harrell, C. R., Fellabaum, C., Jovicic, N., Djonov, V., Arsenijevic, N., & Volarevic, V. (2019). Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells, 8(5). doi:10.3390/cells8050467

Henderson, I., Lavigne, P., Valenzuela, H., & Oakes, B. (2007). Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res, 455, 253-261. doi:10.1097/01.blo.0000238829.42563.56

Jang, Y., Jung, H., & Ju, J. H. (2017). Chondrogenic Differentiation Induction of Adipose-derived Stem Cells by Centrifugal Gravity. J Vis Exp(120). doi:10.3791/54934

Janssens, K., ten Dijke, P., Janssens, S., & Van Hul, W. (2005). Transforming growth factor-beta1 to the bone. Endocr Rev, 26(6), 743-774. doi:10.1210/er.2004-0001

Khatab, S., van Osch, G. J., Kops, N., Bastiaansen-Jenniskens, Y. M., Bos, P. K., Verhaar, J. A., . . . van Buul, G. M. (2018). Mesenchymal stem cell secretome reduces pain and prevents cartilage damage in a murine osteoarthritis model. Eur Cell Mater, 36, 218-230. doi:10.22203/eCM.v036a16

Kim, Y. K., Kim, S. G., Lim, S. C., Lee, H. J., & Yun, P. Y. (2010). A clinical study on bone formation using a demineralized bone matrix and resorbable membrane. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 109(6), e6-11. doi:10.1016/j.tripleo.2010.01.012

Mancuso, P., Raman, S., Glynn, A., Barry, F., & Murphy, J. M. (2019). Mesenchymal Stem Cell Therapy for Osteoarthritis: The Critical Role of the Cell Secretome. Front Bioeng Biotechnol, 7, 9. doi:10.3389/fbioe.2019.00009

Nowak, M., Madej, J. A., & Dziegiel, P. (2007). Intensity of COX2 Expression in Cells of Soft Tissue Fibrosarcomas in Dogs as Related to Grade of Tumour Malignancy. Bull Vet Inst Pulawy, 51, 275-279.

Remmele, W., & Stegner, H. E. (1987). Vorschlag zur einheitlichen Definition eines Immunreaktiven Score (IRS) für den immunhistochemischen Östrogenrezeptor-Nachweis (ER-ICA) im Mammakarzinomgewebe. Der Pathologe, 8(3), 138-140.

Satue, M., Schuler, C., Ginner, N., & Erben, R. G. (2019). Intra-articularly injected mesenchymal stem cells promote cartilage regeneration, but do not permanently engraft in distant organs. Sci Rep, 9(1), 10153. doi:10.1038/s41598-019-46554-5

Schmitz, M. R., DeHart, M. M., Qazi, Z., & Shuler, F. D. (2016). Joints. In M. D. Miller & S. R. Thompson (Eds.), Miller’s Review of Orthopaedics (7th ed., pp. 40-68). Philadelphia, PA: Elsevier.

Tuan, R. S., & Mauck, R. L. (2013). Articular Cartilage Repair and Regeneration. In R. J. O’Keefe, J. J. Jacobs, C. R. Chu, & T. A. Einhorn (Eds.), Orthopaedic Basic Science: Foundations of Clinical Practice (4th ed., pp. 309-327). Rosemont, IL: American Academy of Orthopaedic Surgeons.

Ulrich-Vinther, M., Maloney, M. D., Schwarz, E. M., Rosier, R., & O’Keefe, R. J. (2003). Articular Cartilage Biology. J Am Acad Orthop Surg, 11(6), 421-430.

Utomo, D. N., Abdul Rantam, F., Ferdiansyah, & Purwati. (2017). Regeneration Mechanism of Full Thickness Cartilage Defect Using Combination of Freeze Dried Bovine Cartilage Scaffold - Allogenic Bone Marrow Mesenchymal Stem Cells - Platelet Rich Plasma Composite (SMPC) Implantation. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 31, 70-82. doi:10.4028/

Utomo, D. N., & Fachrizal, A. (2017). Uji BIokompatibilitas Decellularized Cartilage Bovine Scaffold Secara In-Vitro dan In-Vivo. Penelitian Akhir. Orthopaedi dan Traumatologi. RSUD Dr. Soetomo / Fakultas Kedokteran Universitas Airlangga.

Utomo, D. N., Mahyudin, F., Wardhana, T. H., Purwati, P., Brahmana, F., & Gusti, A. W. R. (2019). Physicobiochemical Characteristics and Chondrogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) in Biodegradable Porous Sponge Bovine Cartilage Scaffold. Int J Biomater, 2019, 8356872. doi:10.1155/2019/8356872

Vizoso, F. J., Eiro, N., Cid, S., Schneider, J., & Perez-Fernandez, R. (2017). Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci, 18(9). doi:10.3390/ijms18091852

Wirashada, B. C., Utomo, D. N., Purwati, Widhiyanto, L., & Hernugrahanto, K. D. (2019). Immunogenicity evaluation of Polimorphonuclear (PMN) cells, IL-2, IL-10 and IgG of Biodegradable Porous Sponge Cartilage Scaffold (BPSCS), Adipose Derived Mesenchymal Stem Cell (ADMSC) and secretome in New Zealand white rabbits with cartilage defect : In Vivo Experimental Study. Biochem. Cell. Arch, 19, 0000-0000. Retrieved from

Xu, T., Yu, X., Yang, Q., Liu, X., Fang, J., & Dai, X. (2019). Autologous Micro-Fragmented Adipose Tissue as Stem Cell-Based Natural Scaffold for Cartilage Defect Repair. Cell Transplant, 963689719880527. doi:10.1177/0963689719880527