Perbandingan K-Means dan K-Medoids dalam Pengelompokkan Komoditas Ekspor Industri di Indonesia

Panji Lokajaya Arifa (1), Hazelita Dwi Rahmasari (2), Carlya Agmis Aimandiga (3), Anwar Fitrianto (4), Rachmat Bintang Yudhianto (5)
(1) IPB University, Indonesia,
(2) IPB University, Indonesia,
(3) IPB University, Indonesia,
(4) IPB University, Indonesia,
(5) IPB University, Indonesia

Abstract

International trade plays a crucial role in Indonesia's economic growth, particularly through industrial commodity exports. However, its heavy dependence on a few key commodities makes it vulnerable to global market fluctuations. This study aims to explore trends in industrial commodity export values ​​and compare the performance of cluster methods in grouping commodities based on their value patterns. The research data used are monthly export values ​​from 2022 to mid-2025, sourced from the Central Statistics Agency (BPS). The analytical methods used include trend exploration and cluster analysis with K-Means and K-Medoids using Dynamic Time Warping (DTW) distance. The results of the export value trend exploration indicate that palm oil dominates industrial export value, while other commodities tend to have stable patterns at medium to low values. Evaluation of clustering results using K-Means and K-Medoids each obtained 3 clusters indicating that K-Medoids provided the best performance by obtaining a Silhouette Score of 0.1577 and a Davies-Bouldin Index (DBI) of 1.7990. This value is better than K-Means which obtained a Silhouette Score of 0.1493 and a DBI of 2.3037 indicating that the method is less than optimal in separating clusters. This finding explains that K-Medoids is more robust against outliers and is able to provide more representative groupings. So it can provide a deeper understanding of commodity grouping patterns and contribute to providing export policy recommendations to reduce dependence on primary commodities and increase the export competitiveness of Indonesian industrial products.

Full text article

Generated from XML file

References

Bustaman, A., Indiastuti, R., Budiono, B., & Anas, T. (2022). Quality of Indonesia’s domestic institutions and export performance in the era of global value chains. Journal of Economic Structures, 11(1). https://doi.org/10.1186/s40008-022-00293-5

Gubu, L., Rosadi, D., & Abdurakhman. (2021). PEMBENTUKAN PORTOFOLIO SAHAM MENGGUNAKAN KLASTERING TIME SERIES K-MEDOID DENGAN UKURAN JARAK DYNAMIC TIME WARPING. Jurnal Aplikasi Statistika & Komputasi Statistik, 13(2), 35–46. https://doi.org/10.34123/jurnalasks.v13i2.295

Hermanto, H. (2024). Implementation of the Web-Based K-Means Clustering Algorithm on Hypertension Levels in the Elderly at the Bungah District Health Center. Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics, 6(2), 65–77. https://doi.org/10.35882/h6596074

Irani, J., Pise, N., & Phatak, M. (2016). Clustering Techniques and the Similarity Measures used in Clustering: A Survey. International Journal of Computer Applications, 134(7), 9–14. https://doi.org/10.5120/ijca2016907841

Januzaj, Y., Beqiri, E., & Luma, A. (2023). Determining the Optimal Number of Clusters using Silhouette Score as a Data Mining Technique. International Journal of Online and Biomedical Engineering, 19(4), 174–182. https://doi.org/10.3991/ijoe.v19i04.37059

Muhammad Raqib Syahkur, Hartama, D., & Solikhun, S. (2024). Evaluasi Jumlah Cluster pada Algoritma K-Means++ Menggunakan Silhouette dan Elbow dengan Validasi Nilai DBI dalam Mengelompokkan Gizi Balita. JST (Jurnal Sains Dan Teknologi), 13(3), 487–496. https://doi.org/10.23887/jstundiksha.v13i3.86419

Novianti, T., Sari, A. M., Sari, L. K., & Asikin, Z. (2024). Competitiveness of Indonesia’s Agricultural Exports To China: Trends and Strategic Insights. Jurnal Manajemen Dan Agribisnis, 21(3), 374–386. https://doi.org/10.17358/jma.21.3.374

Pitaloka, N. M. A. D. G., & Budiningsih, N. K. (2025). Analisis Daya Saing Ekspor Manufaktur Indonesia di Pasar Global. Optimal: Jurnal Ekonomi Dan Manajemen, 5(4). https://doi.org/https://doi.org/10.55606/optimal.v5i4.7955

Qusyairi, M., Zul Hidayatullah, & Arnila Sandi. (2024). Penerapan K-Means Clustering Dalam Pengelompokan Prestasi Siswa Dengan Optimasi Metode Elbow. Infotek: Jurnal Informatika Dan Teknologi, 7(2), 500–510. https://doi.org/10.29408/jit.v7i2.26375

Rahman, A. T., Wiranto, & Anggarainingsih, R. (2017). Coal Trade Data Clusterung Using K-Means ( Case Study PT . Global Bangkit Utama ). ITSMART: Jurnal Ilmiah Teknologi Dan Informas, 6(1), 24–31. https://doi.org/https://doi.org/10.20961/itsmart.v6i1.11296

Rizki, M. I., Taqqiyuddin, T. A., & Cerelia, J. J. (2021). K-Medoids Clustering dengan Jarak Dynamic Time Warping dalam Mengelompokkan Provinsi di Indonesia Berdasarkan Kasus Aktif COVID-19. Prosiding Seminar Nasional Matematika, 4(March), 685–692.

Sari, R. Y., Oktavianto, H., Sulistyo, H. W., Teknik, M. F., Jember, U. M., Teknik, D. F., Muhammdiyah, U., Koresponden, J., Teknik, D. F., & Jember, U. M. (2022). ALGORITMA K-MEANS DENGAN METODE ELBOW UNTUK MENGELOMPOKKAN KABUPATEN/KOTA DI JAWA TENGAH BERDASARKAN KOMPONEN PEMBENTUK INDEKS PEMBANGUNAN MANUSIA. 3(2), 104–108.

Setiawati, E., Fernanda, U. D., Agesti, S., Iqbal, M., & Herjho, M. O. A. (2024). Implementation of K-Means, K-Medoid and DBSCAN Algorithms In Obesity Data Clustering. IJATIS: Indonesian Journal of Applied Technology and Innovation Science, 1(1), 23–29. https://doi.org/10.57152/ijatis.v1i1.1109

Tsabitah, D., Angraini, Y., & Sumertajaya, I. M. (2025). Implementation of Clustering Time Series with DTW to Clustering and Forecasting Rice Prices Each Provinces in Indonesia. Inferensi, 8(1), 13. https://doi.org/10.12962/j27213862.v8i1.21952

Ulvi, H. A., & Ikhsan, M. (2024). Comparison of K-Means and K-Medoids Clustering Algorithms for Export and Import Grouping of Goods in Indonesia. Sinkron, 8(3), 1671–1685. https://doi.org/10.33395/sinkron.v8i3.13815

Ustriaji, F. (2017). ANALISIS DAYA SAING KOMODITI EKSPOR UNGGULAN INDONESIA DI PASAR INTERNASIONAL. Jurnal Ekonomi Pembangunan, 14(2). https://doi.org/https://doi.org/10.22219/jep.v14i2.3851

Valentika, N., Nursyirwan, V. I., Syazali, M., Azis, I., & Abdullah, S. (2021). Pemodelan Suku Bunga, Kurs, Impor dan Ekspor dengan Menggunakan VECM. MUST: Journal of Mathematics Education, Science and Technology, 6(1), 15. https://doi.org/10.30651/must.v6i1.5858

Wijaya, F. A. W. T. S., Prasetyo, E., & Tias, R. F. (2024). Dynamic Time Warping Pada Metode K-Means Untuk Pengelompokan Data Trend Penjualan Produk. Jurnal Nasional Teknologi Dan Sistem Informasi, 02, 100–109.

Xia, S., Peng, D., Meng, D., Zhang, C., & ... (2020). Ball -Means: Fast Adaptive Clustering With No Bounds. IEEE Transactions on …, May. https://doi.org/10.48550/arXiv.2005.00784

Authors

Panji Lokajaya Arifa
arf4arifa@apps.ipb.ac.id (Primary Contact)
Hazelita Dwi Rahmasari
Carlya Agmis Aimandiga
Anwar Fitrianto
Rachmat Bintang Yudhianto
Arifa, P. L., Rahmasari, H. D., Aimandiga, C. A., Fitrianto, A., & Yudhianto, R. B. (2025). Perbandingan K-Means dan K-Medoids dalam Pengelompokkan Komoditas Ekspor Industri di Indonesia. MUST: Journal of Mathematics Education, Science and Technology, 10(2), 37–56. https://doi.org/10.30651/must.v10i2.28661

Article Details