Perbandingan K-Means dan K-Medoids dalam Pengelompokkan Komoditas Ekspor Industri di Indonesia
Abstract
International trade plays a crucial role in Indonesia's economic growth, particularly through industrial commodity exports. However, its heavy dependence on a few key commodities makes it vulnerable to global market fluctuations. This study aims to explore trends in industrial commodity export values and compare the performance of cluster methods in grouping commodities based on their value patterns. The research data used are monthly export values from 2022 to mid-2025, sourced from the Central Statistics Agency (BPS). The analytical methods used include trend exploration and cluster analysis with K-Means and K-Medoids using Dynamic Time Warping (DTW) distance. The results of the export value trend exploration indicate that palm oil dominates industrial export value, while other commodities tend to have stable patterns at medium to low values. Evaluation of clustering results using K-Means and K-Medoids each obtained 3 clusters indicating that K-Medoids provided the best performance by obtaining a Silhouette Score of 0.1577 and a Davies-Bouldin Index (DBI) of 1.7990. This value is better than K-Means which obtained a Silhouette Score of 0.1493 and a DBI of 2.3037 indicating that the method is less than optimal in separating clusters. This finding explains that K-Medoids is more robust against outliers and is able to provide more representative groupings. So it can provide a deeper understanding of commodity grouping patterns and contribute to providing export policy recommendations to reduce dependence on primary commodities and increase the export competitiveness of Indonesian industrial products.
Full text article
References
Bustaman, A., Indiastuti, R., Budiono, B., & Anas, T. (2022). Quality of Indonesia’s domestic institutions and export performance in the era of global value chains. Journal of Economic Structures, 11(1). https://doi.org/10.1186/s40008-022-00293-5
Gubu, L., Rosadi, D., & Abdurakhman. (2021). PEMBENTUKAN PORTOFOLIO SAHAM MENGGUNAKAN KLASTERING TIME SERIES K-MEDOID DENGAN UKURAN JARAK DYNAMIC TIME WARPING. Jurnal Aplikasi Statistika & Komputasi Statistik, 13(2), 35–46. https://doi.org/10.34123/jurnalasks.v13i2.295
Hermanto, H. (2024). Implementation of the Web-Based K-Means Clustering Algorithm on Hypertension Levels in the Elderly at the Bungah District Health Center. Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics, 6(2), 65–77. https://doi.org/10.35882/h6596074
Irani, J., Pise, N., & Phatak, M. (2016). Clustering Techniques and the Similarity Measures used in Clustering: A Survey. International Journal of Computer Applications, 134(7), 9–14. https://doi.org/10.5120/ijca2016907841
Januzaj, Y., Beqiri, E., & Luma, A. (2023). Determining the Optimal Number of Clusters using Silhouette Score as a Data Mining Technique. International Journal of Online and Biomedical Engineering, 19(4), 174–182. https://doi.org/10.3991/ijoe.v19i04.37059
Muhammad Raqib Syahkur, Hartama, D., & Solikhun, S. (2024). Evaluasi Jumlah Cluster pada Algoritma K-Means++ Menggunakan Silhouette dan Elbow dengan Validasi Nilai DBI dalam Mengelompokkan Gizi Balita. JST (Jurnal Sains Dan Teknologi), 13(3), 487–496. https://doi.org/10.23887/jstundiksha.v13i3.86419
Novianti, T., Sari, A. M., Sari, L. K., & Asikin, Z. (2024). Competitiveness of Indonesia’s Agricultural Exports To China: Trends and Strategic Insights. Jurnal Manajemen Dan Agribisnis, 21(3), 374–386. https://doi.org/10.17358/jma.21.3.374
Pitaloka, N. M. A. D. G., & Budiningsih, N. K. (2025). Analisis Daya Saing Ekspor Manufaktur Indonesia di Pasar Global. Optimal: Jurnal Ekonomi Dan Manajemen, 5(4). https://doi.org/https://doi.org/10.55606/optimal.v5i4.7955
Qusyairi, M., Zul Hidayatullah, & Arnila Sandi. (2024). Penerapan K-Means Clustering Dalam Pengelompokan Prestasi Siswa Dengan Optimasi Metode Elbow. Infotek: Jurnal Informatika Dan Teknologi, 7(2), 500–510. https://doi.org/10.29408/jit.v7i2.26375
Rahman, A. T., Wiranto, & Anggarainingsih, R. (2017). Coal Trade Data Clusterung Using K-Means ( Case Study PT . Global Bangkit Utama ). ITSMART: Jurnal Ilmiah Teknologi Dan Informas, 6(1), 24–31. https://doi.org/https://doi.org/10.20961/itsmart.v6i1.11296
Rizki, M. I., Taqqiyuddin, T. A., & Cerelia, J. J. (2021). K-Medoids Clustering dengan Jarak Dynamic Time Warping dalam Mengelompokkan Provinsi di Indonesia Berdasarkan Kasus Aktif COVID-19. Prosiding Seminar Nasional Matematika, 4(March), 685–692.
Sari, R. Y., Oktavianto, H., Sulistyo, H. W., Teknik, M. F., Jember, U. M., Teknik, D. F., Muhammdiyah, U., Koresponden, J., Teknik, D. F., & Jember, U. M. (2022). ALGORITMA K-MEANS DENGAN METODE ELBOW UNTUK MENGELOMPOKKAN KABUPATEN/KOTA DI JAWA TENGAH BERDASARKAN KOMPONEN PEMBENTUK INDEKS PEMBANGUNAN MANUSIA. 3(2), 104–108.
Setiawati, E., Fernanda, U. D., Agesti, S., Iqbal, M., & Herjho, M. O. A. (2024). Implementation of K-Means, K-Medoid and DBSCAN Algorithms In Obesity Data Clustering. IJATIS: Indonesian Journal of Applied Technology and Innovation Science, 1(1), 23–29. https://doi.org/10.57152/ijatis.v1i1.1109
Tsabitah, D., Angraini, Y., & Sumertajaya, I. M. (2025). Implementation of Clustering Time Series with DTW to Clustering and Forecasting Rice Prices Each Provinces in Indonesia. Inferensi, 8(1), 13. https://doi.org/10.12962/j27213862.v8i1.21952
Ulvi, H. A., & Ikhsan, M. (2024). Comparison of K-Means and K-Medoids Clustering Algorithms for Export and Import Grouping of Goods in Indonesia. Sinkron, 8(3), 1671–1685. https://doi.org/10.33395/sinkron.v8i3.13815
Ustriaji, F. (2017). ANALISIS DAYA SAING KOMODITI EKSPOR UNGGULAN INDONESIA DI PASAR INTERNASIONAL. Jurnal Ekonomi Pembangunan, 14(2). https://doi.org/https://doi.org/10.22219/jep.v14i2.3851
Valentika, N., Nursyirwan, V. I., Syazali, M., Azis, I., & Abdullah, S. (2021). Pemodelan Suku Bunga, Kurs, Impor dan Ekspor dengan Menggunakan VECM. MUST: Journal of Mathematics Education, Science and Technology, 6(1), 15. https://doi.org/10.30651/must.v6i1.5858
Wijaya, F. A. W. T. S., Prasetyo, E., & Tias, R. F. (2024). Dynamic Time Warping Pada Metode K-Means Untuk Pengelompokan Data Trend Penjualan Produk. Jurnal Nasional Teknologi Dan Sistem Informasi, 02, 100–109.
Xia, S., Peng, D., Meng, D., Zhang, C., & ... (2020). Ball -Means: Fast Adaptive Clustering With No Bounds. IEEE Transactions on …, May. https://doi.org/10.48550/arXiv.2005.00784
Authors
Copyright (c) 2025 Panji Lokajaya Arifa, Hazelita Dwi Rahmasari, Carlya Agmis Aimandiga, Anwar Fitrianto, Rachmat Bintang Yudhianto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work