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ABSTRAK 

  

Konveksi campuran merupakan gabungan dari konveksi bebas yang disebabkan oleh gaya 

apung akibat perbedaan densitas dan konveksi paksa akibat gaya luar yang meningkatkan laju 

pertukaran panas. Artinya, pada konveksi bebas, pengaruh gaya luar juga signifikan selain gaya 

apung. Dalam penelitian ini jenis fluida yang memiliki efek viskoelastik adalah non-Newtonian. 

Cairan viskoelastik yang melewati permukaan bola membentuk lapisan tipis, yang karena 

viskositasnya yang dominan disebut dengan lapisan batas. Lapisan pembatas yang diperoleh 

dianalisis dengan ketebalan lapisan batas-y di dekat titik stagnasi bawah, kemudian diperoleh 

persamaan dimensi lapisan batas, kontinuitas, momentum, dan persamaan energi. Persamaan 

lapisan batas dimensi ini kemudian diubah menjadi persamaan lapisan batas non dimensi dengan 

menggunakan variabel non dimensi. Selanjutnya persamaan lapisan batas non dimensional 

ditransformasikan menjadi persamaan differensial biasa dengan menggunakan fungsi stream, 

sehingga diperoleh persamaan lapisan batas yang tidak serupa. Persamaan lapisan batas tidak 

serupa diselesaikan secara numerik dengan menggunakan metode beda hingga dari Keller-Box. 

Hasil diskritisasi tidak linier dan harus dilinierisasi menggunakan teknik linierisasi newton. Solusi 

numerik menganalisis pengaruh parameter bilangan Prandtl, viskoelastik, konveksi campuran, dan 

maghnetohidrodinamik terhadap profil kecepatan, profil suhu, dan suhu dinding. 

 

Kata kunci: teori lapisan batas, aliran konveksi campuran, Navier-Stokes, fluida viskoelastik. 

 

ABSTRACT 

 

Mixed convection is the combination of a free convection caused by the buoyancy forces 

due to the different density and a forced convection due to external forces that increase the heat 
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exchange rate. This means that, in free convection, the effect of external forces is significant 

besides buoyancy forces. In this study the fluid type with viscoelastic effect is non-Newtonian. 

The viscoelastic fluids that pass over a surface of a sphere form a thin layer, which due to their 

dominant viscosity is called by the border layer. The obtained limiting layer is analyzed with the 

thickness of the boundary layer-𝑦 near the lower stagnating point, then obtained dimensional 

boundary layer equations, continuity, momentum, and energy equations. These dimensional 

boundary layer equations are then transformed into non-dimensional boundary layer equations by 

using non-dimensional variables. Further, the non-dimensional boundary layer equations are 

transformed into ordinary differential equations by using stream function, so that obtained the non-

similar boundary layer equations. These non-similar boundary layer equations are solved 

numerically by using finite difference method of Keller-Box. The discretization results are non-

linear and it should be linearized using newton linearization technique. The numerical solutions 

are analyzed the effect of Prandtl number, viscoelastic, mixed convection, and MHD parameters 

towards velocity profile, temperature profile, and wall temperature. 

 

Keywords: boundary layer theory, mixed convection flow, Navier-Stokes, viscoelastic fluid. 

 

INTRODUCTION 

The boundary layer problems of mixed convection flow over a sphere are 

fundamental theory and have been applied widely in engineering applications. 

Many researchers have investigated these problems in different geometries such 

as flat plate, cone, and cylinder with type of fluids Newtonian or non-Newtonian. 

Boundary layer on fluid is a layer near surface of medium so the effect of 

viscosity and velocity profile to be significant because of shear stress at the wall 

(Sleigh and Andrew, 2001). In this research, the mixed convection flow that is the 

combination of free convection flow and forced convection flow is analyzed 

(Kreith and Frank, 1994). The researches of mixed convection over a sphere have 

been studied by several researchers such as Amin et al (2002) studied mixed 

convection flow over a surface of sphere in steady state and incompressible with 

the constant temperature. Further, the numerical solutions were solved by the 

Keller-Box method. Nazar et al (2010) studied mixed convection flow over a 

sphere with Newtonian heating. Heat transfer of Newtonian heating was 

proportional to local surface temperature. Salleh and Ibrahim (2002) studied 

mixed convection flow over a sphere at lower stagnation point with Newtonian 

heating. Temperature profile and velocity profile were analyzed based on mixed 
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convection parameter and Prandtl number. Kasim (2014) studied mixed 

convection flow of viscoelastic fluid over a sphere in steady-state and 

incompressible that was solved numerically by the Keller-Box method.  A similar 

mathematical model with the current paper was studied by Ghani, et al (2014) and 

(2015) for case of mixed convection flow, where Crank-Nicolson and iterative 

method were employed to establish the numerical results. Moreover, the 

numerical solution for case of free convection flow over a sphere was investigated 

by Rumite, et al (2015). Based on the previous studies, we investigate the velocity 

and temperature profile to mixed convection flow of viscoelastic fluid over a 

surface of sphere with the effect of MHD in steady state and incompressible. 

These non-similar equations are solved numerically using the finite difference 

method of Keller-Box with newton linearization technique to solve non-linear 

ordinary differential equations. In this research, it is only investigated laminar 

flow of viscoelastic fluid over a sphere surface. This means that the velocity of 

fluid is small because of the viscoelastic effect that is shown by the Reynolds 

number 𝑅𝑒 < 500 (Widodo, 2012). 

 

MATHEMATICAL MODELING 

Consider steady-state and incompressible two-dimensional mixed 

convection flow of viscoelastic fluid flow over a sphere with the effect of MHD 

where 𝑎 is radius of sphere. The physical model of this research is illustrated as 

follows.  

 

Figure 1. Physical Model of Mixed Convection of Viscoelastic Fluid Over a Solid 

Sphere 
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Figure 1 gives illustration of the physical model and coordinate system to 

mixed convection flow of viscoelastic fluid over a surface of solid sphere. Heat 

flux 𝑞𝑤  on the surface of sphere can affect the temperature around the surface of 

sphere becomes increased because of the friction between the viscoelastic of fluid 

and surface of sphere. 𝑇∞  denotes the temperature of fluid past a sphere. Since the 

different density of temperature between fluid and surface of sphere, then the fluid 

goes upward where the gravity 𝑔 is considered in the current paper. Moreover, 

𝑟 (𝑥 ) and 𝑎  are radial distance and radius of sphere respectively, where the radial 

distance 𝑟 (𝑥 )  is more detail written in APPENDIX. Based on the Boussines q 

and boundary layer approximations, then one has the basic equations of 

continuity, momentum, and energy equations that have been studied by Widodo 

(2013) and Kasim (2014). 

𝜕

𝜕𝑥 
 𝑟 𝑢  +

𝜕

𝜕𝑦 
 𝑟 𝑣  = 0 (1) 

𝑢 
𝜕𝑢 

𝜕𝑥 
 + 𝑣 

𝜕𝑢 

𝜕𝑦 
= 𝑢𝑒   

𝜕𝑢𝑒   

𝜕𝑥 
+ 𝜈  

𝜕2𝑢 

𝜕𝑥 2
 −

𝑘0

𝜌
 𝑢  

𝜕3𝑢 

𝜕𝑥 3𝑦 2
 + 𝑣 

𝜕3𝑢 

𝜕𝑦 3
+

𝜕𝑢 

𝜕𝑥 
 
𝜕2𝑢 

𝜕𝑦 2
  +  

𝑘0

𝜌
 
𝜕𝑢 

𝜕𝑦 
 

𝜕2𝑢 

𝜕𝑦 𝜕𝑥 
  −   𝑔𝛽 𝑇 − 𝑇 ∞ sin  

𝑥 

𝑎 
 −

1

𝜌
𝜎 𝑢 − 𝑢𝑒    𝐵0

2 (2) 

 𝑢 
𝜕𝑇 

𝜕𝑥 
+ 𝑣 

𝜕𝑇 

𝜕𝑦 
 = 𝛼

𝜕2𝑇 

𝜕𝑦 2
 (3) 

with the boundary conditions. 

𝑢 = 𝑣 = 0,
𝜕𝑇 

𝜕𝑦 
= −

𝑞𝑤

𝑘
 𝑎𝑡 𝑦 = 0  

𝑢 = 𝑢𝑒    𝑥 ,
𝜕𝑢 

𝜕𝑦 
= 0, 𝑇 = 𝑇∞  𝑎𝑡 𝑦 → ∞ (4) 

where 𝑢𝑒(𝑥) is velocity of local free flow at the outside of boundary layer that is 

defined by 𝑢𝑒 𝑥 =
3

2
𝑈∞ sin  

𝑥 

𝑎 
 . The non-dimensional variables are then given as 

follows. 

𝑥 =
𝑥 

𝑎
, 𝑦 = 𝑅𝑒

1

2  
𝑦 

𝑎
 , 𝑟 𝑥 =

𝑟  𝑥  

𝑎
, 𝑢 =

𝑢 

𝑈∞
,  

𝑣 = 𝑅𝑒

1

2  
𝑣 

𝑈∞
 , 𝜃 =

𝑅𝑒

1

2 𝑇 − 𝑇∞ 𝑘

𝑞𝑤𝑎
, 𝑢𝑒 𝑥 =

𝑢𝑒    𝑥  

𝑈∞
 (5) 

By substituting (5) into (1) to (3), then one has the non-dimensional equations. 
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𝜕

𝜕𝑥
 𝑟𝑢 +

𝜕

𝜕𝑦
 𝑟𝑣 = 0 (6) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑢𝑒

𝜕𝑢𝑒

𝜕𝑥
+

𝜕2𝑢

𝜕𝑦2
+ 𝜆𝜃 sin 𝑥 − 𝐾  𝑣

𝜕3𝑢

𝜕𝑦3
+ 𝑢

𝜕3𝑢

𝜕𝑥𝜕𝑦2
   

+𝐾  
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2
+

𝜕𝑢

𝜕𝑦

𝜕2𝑣

𝜕𝑦2
  −   𝑀 𝑢 − 𝑢𝑒  (7) 

𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦
 (8) 

where 𝐾 and 𝜆 are non-dimensional parameters of viscoelastic and mixed 

convection respectively that are defined as 𝐾 =
𝑘0

𝜌
 
𝑈∞

𝑎𝜈
  and 𝜆 =

𝐺𝑟

𝑅𝑒

5
2

 respectively 

with the following boundary conditions. 

𝑢 = 𝑣 = 0, 𝜃′ = −1 𝑎𝑡 𝑦 = 0  

𝑢𝑒 =
3

2
sin 𝑥 ,

𝜕𝑢

𝜕𝑦
= 0, 𝜃 = 0 𝑎𝑡 𝑦 → ∞ (9) 

Furthermore, it follows from(9), then (6) to (8) can be solved using the 

stream function in (10). 

𝜓 = 𝑥𝑟 𝑥 𝑓 𝑥, 𝑦 , 𝜃 = 𝜃 𝑥, 𝑦  (10) 

where 𝜓 is defined as 

𝑢 =
1

𝑟

𝜕𝜓

𝜕𝑦
 and 𝑣 = −

1

𝑟

𝜕𝜓

𝜕𝑥
 (11) 

Based on (11), then (6) to (8) are written as the non-similar equations. 

 
𝜕3𝑓

𝜕𝑦3
 +  1 + 𝑥

cos 𝑥 

sin 𝑥 
 𝑓

𝜕2𝑓

𝜕𝑦2
−  

𝜕𝑓

𝜕𝑦
 

2

+
9

4
+ 𝜆𝜃

sin 𝑥 

𝑥
− 2𝐾  

𝜕𝑓

𝜕𝑦

𝜕3𝑓

𝜕𝑦3
   

+𝐾   1 + 𝑥
cos 𝑥 

sin 𝑥 
  𝑓

𝜕4𝑓

𝜕𝑦4
+  

𝜕2𝑓

𝜕𝑦2
 

2

  = 𝑥  
𝜕𝑓

𝜕𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦
−

𝜕2𝑓

𝜕𝑦2

𝜕𝑓

𝜕𝑥
 − 𝑀

𝜕𝑓

𝜕𝑦
  

+
3

2
𝑀

𝑠𝑖𝑛 𝑥

𝑥
+ 𝐾𝑥  

𝜕3𝑓

𝜕𝑦3

𝜕2𝑓

𝜕𝑥𝜕𝑦
−

𝜕4𝑓

𝜕𝑦4

𝜕𝑓

𝜕𝑥
− 𝑥

𝜕2𝑓

𝜕𝑦2

𝜕3𝑓

𝜕𝑥𝜕𝑦2
+

𝜕𝑓

𝜕𝑦

𝜕4𝑓

𝜕𝑥𝜕𝑦3
  (12) 

𝑥  
𝜕𝑓

𝜕𝑦

𝜕𝜃

𝜕𝑥
−

𝜕𝑓

𝜕𝑥

𝜕𝜃

𝜕𝑦
 =

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦
+  1 + 𝑥

cos 𝑥 

sin 𝑥 
 𝑓

𝜕𝜃

𝜕𝑦
 (13) 

with the boundary conditions. 

𝑓 = 0,
𝜕𝑓

𝜕𝑦
= 0, 𝜃′ = −1 𝑎𝑡 𝑦 = 0  
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𝜕𝑓

𝜕𝑦
→

3

2

sin 𝑥

𝑥
,
𝜕2𝑓

𝜕𝑦2
= 0, 𝜃 → 0 𝑎𝑡 𝑦 → ∞ (14) 

At the lower stagnation point (𝑥 ≈ 0), then equations (12) and (13) become 

𝑓 ′′′ + 2𝑓𝑓 ′′ − 𝑓 ′2 +
9

4
+ 𝜆𝜃 + 2𝐾 𝑓 ′𝑓 ′′′ − 𝑓𝑓 ′′′′ − 𝑓 ′′ 2 − 𝑀  𝑓 ′ −

3

2
 = 0 (15) 

1

𝑃𝑟
𝜃′′ + 2𝑓𝜃′ = 0 (16) 

with the boundary conditions. 

𝑓 0 = 𝑓 ′ 0 = 0, 𝜃 ′ 0 = −1 𝑎𝑡 𝑦 = 0  

𝑓 ′ →
3

2
, 𝑓 ′′ = 0, 𝜃 → 0 𝑎𝑡 𝑦 → ∞ (17) 

  

NUMERICAL TECHNIQUE 

Before discretizing (15) and (16), the finite difference method of Keller-

Box is explained more details as follows.  

 

Figure 2. Two-Dimensional Keller-Box Method Stencil 

 

Figure 2 gives illustration Keller-Box that this method has to replace the 

higher derivative to be first derivative and this causes the computational effort per 

time step expensive. This method are efficient and appropriate to be applied for 

solving the parabolic partial differential equation problems. Based on Figure 2, 

step size of Keller-Box is average between 𝑗 and 𝑗 − 1 for axis 𝑦 and between 𝑖 
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and 𝑖 − 1 for axis 𝑥 where stencil consist of 𝑣1, 𝑣2, 𝑣3, and 𝑣4. Stencil 𝑣3 and 𝑣4 

are known at boundary conditions. Meanwhile, stencil 𝑣1 and 𝑣2 will be obtained 

from the calculation of stencil 𝑣1 and 𝑣2 with half step size for special 𝑥 and 𝑦 

namely 
Δ𝑥

2
 and 

Δ𝑦

2
  respectively as centering steps. This method has two accuracy 

in both space 𝑥 and 𝑦 where the step size of space 𝑥 and 𝑦 to be arbitrary, in other 

words in uniform or non-uniform step size. It follows from (15) and (16), in which 

the momentum and energy equations are in steady state, incompressible, and only 

at lower stagnation point (𝑥 ≈ 0), then above finite difference method Keller-Box 

stencil is only dependent to the space 𝑦. Furthermore, Figure 2 can be represented 

in Figure 3.   

 

Figure 3. One-Dimensional Keller-Box Method Stencil 

 

Figure 3 gives illustration Keller-Box method stencil when it only depends 

on space 𝑦 with the step size of 
Δ𝑦

2
, lower boundary condition 𝑦 = 0 and upper 

boundary condition 𝑦 = 𝑁. In addition, 𝑦 is boundary layer thickness caused the 

shear stress between viscoelastic fluid and surface of solid sphere. Actually this 

One-Dimensional Keller-Box Method Stencil concept is identical to Figure 2 for 

Two-Dimensional Keller-Box Method Stencil where the step size is 
Δ𝑦

2
. To 

facilitate in numerical processes, then (15) and (16) are transformed into first 

order as written in equations (18)-(23). 

𝑓 ′ = 𝑢 (18) 

𝑢′ = 𝑣 (19) 

𝑣 ′ = 𝑤 (20) 

𝑠′ = 𝑡 (21) 
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𝑤 + 2𝑓𝑣 − 𝑢2 +
9

4
+ 𝜆𝑠 + 2𝐾 𝑢𝑤 − 𝑓𝑤 ′ − 𝑣2 − 𝑀  𝑢 −

3

2
 = 0 (22) 

1

𝑃𝑟
𝑡′ + 2𝑓𝑡 = 0 (23) 

where 𝑠 is identical to 𝜃 and the boundary conditions are written in (24). 

𝑓 0 = 𝑢 0 = 0, 𝑡 0 = −1 𝑎𝑡 𝑦 = 0  

𝑢 →
3

2
, 𝑣 = 0, 𝑠 → 0 𝑎𝑡 𝑦 → ∞ (24) 

Based on Figure 3, then (18) to (23) can be discretized using backward difference, 

then we employ the results by newton linearization technique to get (25) 

𝛿𝑓𝑗 − 𝛿𝑓𝑗−1 −
𝑗

2
𝛿𝑢𝑗 −

𝑗

2
𝛿𝑢𝑗−1 =  𝑟1 𝑗   

𝛿𝑢𝑗 − 𝛿𝑢𝑗−1 −
𝑗

2
𝛿𝑣𝑗 −

𝑗

2
𝛿𝑣𝑗−1 =  𝑟2 𝑗   

𝛿𝑣𝑗 − 𝛿𝑣𝑗−1 −
𝑗

2
𝛿𝑤𝑗 −

𝑗

2
𝛿𝑤𝑗−1 =  𝑟3 𝑗   

𝛿𝑠𝑗 − 𝛿𝑠𝑗−1 −
𝑗

2
𝛿𝑡𝑗 −

𝑗

2
𝛿𝑡𝑗−1 =  𝑟4 𝑗   

  𝑎1 𝑗  𝛿𝑤𝑗 +   𝑎2 𝑗  𝛿𝑤𝑗−1 +   𝑎3 𝑗  𝛿𝑣𝑗 +   𝑎4 𝑗  𝛿𝑣𝑗−1 +   𝑎5 𝑗  𝛿𝑓𝑗   

+  𝑎6 𝑗  𝛿𝑓𝑗−1 +   𝑎7 𝑗  𝛿𝑢𝑗 +   𝑎8 𝑗  𝛿𝑢𝑗−1 +   𝑎9 𝑗  𝛿𝑠𝑗 +   𝑎10 𝑗  𝛿𝑠𝑗−1  

=  𝑟5 𝑗   𝑏1 𝑗  𝛿𝑡𝑗 +   𝑏2 𝑗  𝛿𝑡𝑗−1 +   𝑏3 𝑗  𝛿𝑓𝑗 +   𝑏4 𝑗  𝛿𝑓𝑗−1 =  𝑟6 𝑗  (25) 

Where 

 𝑟1 𝑗 = 𝑓𝑗−1 − 𝑓𝑗 +
𝑗

2
 𝑢𝑗 + 𝑢𝑗−1   

 𝑟2 𝑗 = 𝑢𝑗−1 − 𝑢𝑗 +
𝑗

2
 𝑣𝑗 + 𝑣𝑗−1   

 𝑟3 𝑗 = 𝑣𝑗−1 − 𝑣𝑗 +
𝑗

2
 𝑤𝑗 + 𝑤𝑗−1   

 𝑟4 𝑗 = 𝑠𝑗−1 − 𝑠𝑗 +
𝑗

2
 𝑡𝑗 + 𝑡𝑗−1   

 𝑟5 𝑗 = −ℎ𝑗𝑤𝑗−
1

2

− 2ℎ𝑗𝑓𝑗−
1

2

𝑣
𝑗−

1

2

+ ℎ𝑗𝑢𝑗−
1

2

2 −
9

4
ℎ𝑗 − 2ℎ𝑗𝑢𝑗−

1

2

𝑤
𝑗−

1

2

  

+2𝐾𝑓
𝑗−

1

2

 𝑤𝑗 − 𝑤𝑗−1 + 2𝐾𝑗𝑣𝑗−
1

2

2 − 𝜆𝑗 𝑠𝑗−1

2

+ 𝑗𝑀  𝑢
𝑗−

1

2

−
3

2
   

 𝑟6 𝑗 =
1

𝑃𝑟
 𝑡𝑗−1 − 𝑡𝑗  − 2𝑗𝑓𝑗−

1

2

𝑡
𝑗−

1

2
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  𝑎1 𝑗  =
𝑗

2
+ 𝐾𝑗𝑢𝑗−

1

2

− 2𝐾𝑓
𝑗−

1

2

;       𝑎2 𝑗  =   𝑎1 𝑗   

  𝑎3 𝑗  = 𝑗𝑓𝑗−
1

2

− 2𝐾𝑗𝑣𝑗−
1

2

;    𝑎4 𝑗  =   𝑎3 𝑗    

  𝑎5 𝑗  = 𝑗𝑣𝑗−
1

2

− 𝐾 𝑤𝑗 − 𝑤𝑗−1 ;     𝑎6 𝑗  =   𝑎5 𝑗    

  𝑎7 𝑗  = −𝑗𝑢𝑗−
1

2

−
𝑗

2
𝑀 + 𝐾𝑗𝑤𝑗−

1

2

;    𝑎8 𝑗  =   𝑎7 𝑗    

  𝑎9 𝑗  =  
𝜆𝑗

2
 ;    𝑎10 𝑗  =   𝑎9 𝑗    

  𝑏1 𝑗  =
1

𝑃𝑟
+ 𝑗𝑓𝑗−

1

2

;    𝑏2 𝑗  = −
1

𝑃𝑟
+ 𝑗𝑓𝑗−

1

2

  

  𝑏3 𝑗  = 𝑗 𝑡𝑗−1

2

;    𝑏4 𝑗  =   𝑏3 𝑗    

 

TRIDIAGONAL BLOCK MATRIX 

It follows from (25), then it can be iterated for 𝑖 = 1,2, … , 𝑁 with the 

boundary conditions 𝛿𝑓0 = 0, 𝛿𝑢0 = 0, 𝛿𝑠0 = 0, 𝛿𝑢𝑁 = 0, 𝛿𝑣𝑁 = 0, and 𝛿𝑠𝑁 =

0. Then, obtained the block matrix as follows. 

 Iteration 1 

𝛿𝑓1 −
1

2
𝛿𝑢1 =  𝑟1 1  

𝛿𝑢1 −
1

2
𝛿𝑣1 −

1

2
𝛿𝑣0 =  𝑟2 1  

𝛿𝑣1 − 𝛿𝑣0 −
1

2
𝛿𝑤1 −

1

2
𝛿𝑤0 =  𝑟3 1  

𝛿𝑠1 −
1

2
𝛿𝑡1 −

1

2
𝛿𝑡0 =  𝑟4 1  

  𝑎1 1 𝛿𝑤1 +   𝑎2 1 𝛿𝑤0 +   𝑎3 1 𝛿𝑣1 +   𝑎4 1 𝛿𝑣0 +   𝑎5 1 𝛿𝑓1  

+  𝑎7 1 𝛿𝑢1 +   𝑎9 1 𝛿𝑠1 =  𝑟5 1  

  𝑏1 1 𝛿𝑡1 +   𝑏2 1 𝛿𝑡0 +   𝑏3 1 𝛿𝑓1 =  𝑟6 1  



Mohammad Ghani, Wayan Rumite 
 

106 

 
 
 
 
 
 
 
 
 

0 0 0 1 0 0

−
1

2
0 0 0 0 0

−1 −
1

2
0 0 −

1

2
0

0 0 −
1

2
0 0 −

1

2
  𝑎4 1   𝑎2 1 0   𝑎5 1   𝑎1 1 0

0 0   𝑏2 1   𝑏3 1 0   𝑏1 1  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
𝛿𝑣0

𝛿𝑤0

𝛿𝑡0

𝛿𝑓1

𝛿𝑤1

𝛿𝑡1  
 
 
 
 
 

+             

 
 
 
 
 
 
 
 −

1

2
0 0 0 0 0

1 −
1

2
0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

  𝑎7 1   𝑎3 1   𝑎9 1 0 0 0
0 0 0 0 0 0 

 
 
 
 
 
 
 

 
 
 
 
 
 
𝛿𝑢1

𝛿𝑣1

𝛿𝑠1

𝛿𝑓2

𝛿𝑤2

𝛿𝑡2  
 
 
 
 
 

=

 
 
 
 
 
 
 
 𝑟1 1

 𝑟2 1

 𝑟3 1

 𝑟4 1

 𝑟5 1

 𝑟6 1 
 
 
 
 
 
 

  

 

 Iteration 2 

𝛿𝑓2 − 𝛿𝑓1 −
2

2
𝛿𝑢2 −

2

2
𝛿𝑢1 =  𝑟1 2  

𝛿𝑢2 − 𝛿𝑢1 −
2

2
𝛿𝑣2 −

2

2
𝛿𝑣1 =  𝑟2 2  

𝛿𝑣2 − 𝛿𝑣1 −
2

2
𝛿𝑤2 −

2

2
𝛿𝑤1 =  𝑟3 2  

𝛿𝑠2 − 𝛿𝑠1 −
2

2
𝛿𝑡2 −

2

2
𝛿𝑡1 =  𝑟4 2  

  𝑎1 2 𝛿𝑤2 +   𝑎2 2 𝛿𝑤1 +   𝑎3 2 𝛿𝑣2 +   𝑎4 2 𝛿𝑣1 +   𝑎5 2 𝛿𝑓2  

+  𝑎6 2 𝛿𝑓1 +   𝑎7 2 𝛿𝑢2 +   𝑎8 2 𝛿𝑢1 +   𝑎9 2 𝛿𝑠2  

+  𝑎10 2 𝛿𝑠1 =  𝑟5 2  

  𝑏1 2 𝛿𝑡2 +   𝑏2 2 𝛿𝑡1 +   𝑏3 2 𝛿𝑓2 +   𝑏4 2 𝛿𝑓1 =  𝑟6 2  

 
 
 
 
 
 
 
 
0 0 0 −1 0 0
0 0 0 0 0 0

0 0 0 0 −
2

2
0

0 0 0 0 0 −
2

2
0 0 0   𝑎6 2   𝑎2 2 0

0 0 0   𝑏4 2 0   𝑏2 2  
 
 
 
 
 
 
 

 
 
 
 
 
 
𝛿𝑢0

𝛿𝑣0

𝛿𝑠0

𝛿𝑓1

𝛿𝑤1

𝛿𝑡1  
 
 
 
 
 

+  
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 −

2

2
0 0 1 0 0

−1 −
2

2
0 0 0 0

0 −1 0 0 −
2

2
0

0 0 −1 0 0 −
2

2
  𝑎8 2   𝑎4 2   𝑎10 2   𝑎5 2   𝑎1 2 0

0 0 0   𝑏3 2 0   𝑏1 2  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
𝛿𝑢1

𝛿𝑣1

𝛿𝑠1

𝛿𝑓2

𝛿𝑤2

𝛿𝑡2  
 
 
 
 
 

+  

 
 
 
 
 
 
 
 −

2

2
0 0 0 0 0

1 −
2

2
0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

  𝑎7 2   𝑎3 2   𝑎9 2 0 0 0
0 0 0 0 0 0 

 
 
 
 
 
 
 

 
 
 
 
 
 
𝛿𝑢2

𝛿𝑣2

𝛿𝑠2

𝛿𝑓3

𝛿𝑤3

𝛿𝑡3  
 
 
 
 
 

=

 
 
 
 
 
 
 
 𝑟1 2

 𝑟2 2

 𝑟3 2

 𝑟4 2

 𝑟5 2

 𝑟6 2 
 
 
 
 
 
 

  

 

 Iteration 𝑁 

𝛿𝑓𝑁 − 𝛿𝑓𝑁−1 −
𝑁

2
𝛿𝑢𝑁−1 =  𝑟1 𝑁  

−𝛿𝑢𝑁−1 −
𝑁

2
𝛿𝑣𝑁−1 =  𝑟2 𝑁  

−𝛿𝑣𝑁−1 −
𝑁

2
𝛿𝑤𝑁 −

𝑁

2
𝛿𝑤𝑁−1 =  𝑟3 𝑁  

−𝛿𝑠𝑁−1 −
𝑁

2
𝛿𝑡𝑁 −

𝑁

2
𝛿𝑡𝑁−1 =  𝑟4 𝑁  

  𝑎1 𝑁 𝛿𝑤𝑁 +   𝑎2 𝑁 𝛿𝑤𝑁−1 +   𝑎4 𝑁 𝛿𝑣𝑁−1 +   𝑎5 𝑁 𝛿𝑓𝑁   

+  𝑎6 𝑁 𝛿𝑓𝑁−1 +   𝑎7 𝑁 𝛿𝑢𝑁 +   𝑎8 𝑁 𝛿𝑢𝑁−1 +   𝑎10 𝑁 𝛿𝑠𝑁−1 =  𝑟5 𝑁  

  𝑏1 𝑁 𝛿𝑡𝑁 +   𝑏2 𝑁 𝛿𝑡𝑁−1 +   𝑏3 𝑁 𝛿𝑓𝑁 +   𝑏4 𝑁 𝛿𝑓𝑁−1 =  𝑟6 𝑁  

 
 
 
 
 
 
 
 
0 0 0 −1 0 0
0 0 0 0 0 0

0 0 0 0 −
𝑁

2
0

0 0 0 0 0 −
𝑁

2
0 0 0   𝑎6 𝑁   𝑎2 𝑁 0

0 0 0   𝑏4 𝑁 0   𝑏2 𝑁  
 
 
 
 
 
 
 

 
 
 
 
 
 
𝛿𝑢𝑁−2

𝛿𝑣𝑁−2

𝛿𝑠𝑁−2

𝛿𝑓𝑁−1

𝛿𝑤𝑁−1

𝛿𝑡𝑁−1  
 
 
 
 
 

+  
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 −

𝑁

2
0 0 1 0 0

−1 −
𝑁

2
0 0 0 0

0 −1 0 0 −
𝑁

2
0

0 0 −1 0 0 −
𝑁

2
  𝑎8 𝑁   𝑎4 𝑁   𝑎10 𝑁   𝑎5 𝑁   𝑎1 𝑁 0

0 0 0   𝑏3 𝑁 0   𝑏1 𝑁  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
𝛿𝑢𝑁−1

𝛿𝑣𝑁−1

𝛿𝑠𝑁−1

𝛿𝑓𝑁
𝛿𝑤𝑁

𝛿𝑡𝑁  
 
 
 
 
 

=

 
 
 
 
 
 
 
 𝑟1 𝑁
 𝑟2 𝑁
 𝑟3 𝑁
 𝑟4 𝑁
 𝑟5 𝑁
 𝑟6 𝑁 

 
 
 
 
 
 

 

 

These results can be rewritten as follows 

for 𝑗 = 1:  𝐴1  𝛿1 +  𝐶1  𝛿2 =  𝑟1   

for 𝑗 = 2:  𝐵2  𝛿1 +  𝐴2  𝛿2 +  𝐶2  𝛿3 =  𝑟2   

for 𝑗 = 3:  𝐵3  𝛿2 +  𝐴3  𝛿3 +  𝐶3  𝛿4 =  𝑟3   

⋮  

for 𝑗 = 𝑁 − 1:  𝐵𝑁−1  𝛿𝑁−2 +  𝐴𝑁−1  𝛿𝑁−1 +  𝐶𝑁−1  𝛿𝑁 =  𝑟𝑁−1   

for 𝑗 = 𝑁:  𝐵𝑁  𝛿𝑁−1 +  𝐴𝑁  𝛿𝑁 =  𝑟𝑁  (26) 

where 

 𝐴1 =

 
 
 
 
 
 
 
 
 

0 0 0 1 0 0

−
1

2
0 0 0 0 0

−1 −
1

2
0 0 −

1

2
0

0 0 −
1

2
0 0 −

1

2
  𝑎4 1   𝑎2 1 0   𝑎5 1   𝑎1 1 0

0 0   𝑏2 1   𝑏3 1 0   𝑏1 1  
 
 
 
 
 
 
 
 

  

 𝐴𝑗  =

 
 
 
 
 
 
 
 
 
 
 −

2

2
0 0 1 0 0

−1 −
2

2
0 0 0 0

0 −1 0 0 −
2

2
0

0 0 −1 0 0 −
2

2
  𝑎8 2   𝑎4 2   𝑎10 2   𝑎5 2   𝑎1 2 0

0 0 0   𝑏3 2 0   𝑏1 2  
 
 
 
 
 
 
 
 
 
 

,    2 ≤ 𝑗 ≤ 𝑁   
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 𝐵𝑗  =

 
 
 
 
 
 
 
 
0 0 0 −1 0 0
0 0 0 0 0 0

0 0 0 0 −
2

2
0

0 0 0 0 0 −
2

2
0 0 0   𝑎6 2   𝑎2 2 0

0 0 0   𝑏4 2 0   𝑏2 2  
 
 
 
 
 
 
 

,        2 ≤ 𝑗 ≤ 𝑁                 

 𝐶𝑗  =

 
 
 
 
 
 
 
 −

2

2
0 0 0 0 0

1 −
2

2
0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

  𝑎7 2   𝑎3 2   𝑎9 2 0 0 0
0 0 0 0 0 0 

 
 
 
 
 
 
 

,      1 ≤ 𝑗 ≤ 𝑁 − 1           

 𝛿1 =

 
 
 
 
 
 
𝛿𝑣0

𝛿𝑤0

𝛿𝑡0

𝛿𝑓1

𝛿𝑤1

𝛿𝑡1  
 
 
 
 
 

,                              𝛿𝑗  =

 
 
 
 
 
 
 
𝛿𝑢𝑗−1

𝛿𝑣𝑗−1

𝛿𝑠𝑗−1

𝛿𝑓𝑗
𝛿𝑤𝑗

𝛿𝑡𝑗  
 
 
 
 
 
 

,       2 ≤ 𝑗 ≤ 𝑁                        

 𝑟𝑗  =

 
 
 
 
 
 
 
 𝑟1 𝑗
 𝑟2 𝑗
 𝑟3 𝑗
 𝑟4 𝑗
 𝑟5 𝑗
 𝑟6 𝑗  

 
 
 
 
 
 

,             1 ≤ 𝑗 ≤ 𝑁                                                                           

In other words, (26) can be expressed in vector matrix form. 

𝑨𝜹 = 𝒓 (27) 

where 

𝑨 =

 
 
 
 
 
 
[𝐴1] [𝐶1] 0 0 … 0
[𝐵2] [𝐴2] [𝐶2] 0 … 0

0 [𝐵3] [𝐴3] [𝐶3] … ⋮
⋮ ⋮ ⋱ ⋱ ⋱ 0
0 0 0 [𝐵𝑁−1] [𝐴𝑁−1] [𝐶𝑁−1]
0 0 … 0 [𝐵𝑁] [𝐴𝑁]  

 
 
 
 
 

  

𝜹 =

 
 
 
 
 
 

[𝛿1]
[𝛿2]
[𝛿3]
⋮

[𝛿𝑁−1]
[𝛿𝑁]  

 
 
 
 
 

, 𝒓 =

 
 
 
 
 
 

[𝑟1]
[𝑟2]
[𝑟3]
⋮

[𝑟𝑁−1]
[𝑟𝑁]  
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To solve this block matrix, then Decomposition LU method is used to make easy 

in factorization of the form 

𝑨 = 𝑳𝑼 (28) 

where 

𝑳 =

 
 
 
 
 
 
[𝛼1] 0 0 0 … 0
[𝐵2] [𝛼2] 0 0 … 0

0 [𝐵3] [𝛼3] 0 … ⋮
⋮ ⋮ ⋱ ⋱ ⋱ 0
0 0 0 [𝐵𝑁−1] [𝛼𝑁−1] 0
0 0 … 0 [𝐵𝑁] [𝛼𝑁] 

 
 
 
 
 

  

and 

𝑼 =

 
 
 
 
 
 
[𝐼] [Γ1] 0 0 … 0
0 [𝐼] [Γ2] 0 … 0

0 0 [𝐼] [Γ3] … ⋮
⋮ ⋮ ⋱ ⋱ ⋱ 0
0 0 0 0 [𝐼] [Γ𝑁−1]
0 0 … 0 0 [𝐼]  

 
 
 
 
 

  

To compute matrix  𝛼𝑗   and  Γ𝑗  , then the following ones are defined as 

 𝛼1 =  𝐴1   

 𝛼𝑗  =  𝐴𝑗  −  𝐵𝑗   Γ𝑗−1 ,    𝑗 = 2,3, … , 𝑁  

 𝛼𝑗   Γ𝑗  =  𝐶𝑗  ,    𝑗 = 1,2, … , 𝑁 − 1  

Further, by substituting (28) into (27), then obtained 

𝑳𝑼𝜹 = 𝒓 (29) 

Next, by defining 𝑼𝜹 = 𝒘, (29) can be expressed as 

𝑳𝒘 = 𝒓 (30) 

where 

𝒘 =

 
 
 
 
 
 

[𝑤1]
[𝑤2]
[𝑤3]

⋮
[𝑤𝑁−1]

[𝑤𝑁]  
 
 
 
 
 

  

To solve (30), then the following ones are defined as 

 𝛼1  𝑤1 =  𝑟1   

 𝛼𝑗   𝑤𝑗  =  𝑟𝑗  −  𝐵𝑗   𝑤𝑗−1 ,     𝑗 = 2,3, … , 𝑁  
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and  𝑤𝑗   is computed by forward sweep technique. Further, by obtaining  𝑤𝑗   this 

can be used to obtain the solution  𝛿𝑗   using backward sweep technique as shown 

below 

 𝛿𝑗  =  𝑤𝑗    

 𝛿𝑗  =  𝑤𝑗  −  Γ𝑗   𝛿𝑗+1 ,     𝑗 = 1,2, … , 𝑁 − 1  

The iteration is continuing until converging criterion is fulfilled. Based on 

Cebeci and Bradshaw (1977), 𝑣(𝑥, 0, 𝑡) is converging criterion, so the iteration 

will be stopped when  𝛿𝑣 𝑥, 0, 𝑡  < 𝜖 where 𝜖 is very small value. 

 

NUMERICAL RESULTS 

The numerical results of this research are the effect of pandtl number (𝑃𝑟 ), 

viscoelastic (𝐾), mixed convection (𝜆), and MHD (𝑀) parameter to temperature 

profile (𝜃) and velocity profile (𝑓′).  

 

Figure 4. Velocity Profile (𝑓′) with Prandtl Number (𝑃𝑟 = 1,5,10,15) and 

Boundary Layer Thickness 𝑦 
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Figure 5. Temperature Profile (𝜃) with Prandtl Number (𝑃𝑟 = 1,5,10,15) and 

Boundary Layer Thickness 𝑦 

 

Figure 6. Velocity Profile (𝑓′) with Viscoelastic Parameter (𝐾 = 1,5,10,15) and 

Boundary Layer Thickness 𝑦 

 

In Figure 4 it can be seen that as the Prandtl number increases, the fluid 

flow velocity decreases at every certain point 𝑦. The influence of the Prandtl 

number on the fluid temperature decreases at every certain point 𝑦. Based on the 

nature of the convection flow that moves from low density to high density, the 

low temperature has a high density, resulting in a smaller velocity profile.  
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Figure 5 shows that the higher the Prandtl number, the smaller the 

temperature of the fluid passing through the spherical surface at any given point 𝑦, 

this is because the Prandtl number is related to the distribution of heat, so the heat 

distribution increases which results in the fluid temperature getting smaller at 

every certain point 𝑦.  

Figure 6 shows that as the viscoelastic parameter increases, the viscosity 

level also increases, this causes the friction value between the fluid and the 

spherical surface media to increase, so this affects the fluid flow velocity which is 

getting smaller at every certain point 𝑦. 

 

Figure 7. Temperature Profile (𝜃) with Viscoelastic Parameter (𝐾 = 1,5,10,15) 

and Boundary Layer Thickness 𝑦 

 

Figure 7 shows that the increase in the viscoelastic parameter causes the 

fluid temperature to increase at every certain point 𝑦, this is because the influence 

of the increasing value of the viscoelastic parameter causes the frictional force 

between the viscoelastic fluid and the surface of a sphere to also increase. This 

results in the heat generated from the friction also getting bigger, so that the 

temperature of the fluid passing through the surface of the sphere is getting bigger 

at any given point 𝑦. 
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Figure 8. Velocity Profile (𝑓′) with Mixed Convection Parameter (𝜆 = 1,5,10,15) 

and Boundary Layer Thickness 𝑦 

 

Figure 9. Temperature Profile (𝜃) with Mixed Convection Parameter (𝜆 =

1,5,10,15) and Boundary Layer Thickness 𝑦 

 

Figure 8 shows that the higher the convection parameter of the mixture, 

the greater the fluid flow velocity at every certain point 𝑦, this is due to the 

influence of external forces, causing the fluid convection flow velocity to increase 

at any given point 𝑦. Meanwhile, Figure 9 shows that the increase in the 

convection parameters of the mixture, the greater the temperature at every certain 

point 𝑦, this is because the fluid flow velocity that increases at every certain point 
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𝑦 indicates that the temperature of the viscoelastic fluid passing through the 

surface of a sphere is getting bigger at every certain point 𝑦. So that the buoyancy 

forces that are getting bigger cause the fluid temperature to get bigger at every 

certain point 𝑦. 

 

Figure 10. Velocity Profile (𝑓′) with MHD Parameter (𝑀 = 1,5,10,15) and 

Boundary Layer Thickness 𝑦 

 

Figure 11. Temperature Profile (𝜃) with MHD Parameter (𝑀 = 1,5,10,15) and 

Boundary Layer Thickness 𝑦 

 

Figure 10 shows that the higher the hydrodynamic parameters of the 

magnet, the greater the fluid flow velocity at any given point 𝑦, this is due to the 
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decreasing effect of the density of the viscoelastic fluid as shown by the 

correlation. The decreasing density causes the buoyant force to work to be greater, 

thus causing the velocity to increase at any given point 𝑦. Moreover, Figure 11 

shows that the higher the hydrodynamic parameters of the magnet, the higher the 

temperature at any given point 𝑦, this is because a correlation between the 

hydrodynamic parameters of the magnet is inversely proportional to the density of 

the viscoelastic fluid. This causes the hydrodynamic parameters of the magnet to 

increase, the density decreases, so that the temperature increases at every certain 

point 𝑦. 

 

CONCLUSIONS 

In this research, the problem of mixed convection flow on viscoelastic 

fluid over a sphere surface with the effect of MHD is studied. The non-similar 

equations of momentum and energy are solved numerically using the finite 

difference method with the iterative method. The effect of Prantdl number, 

viscoelastic, mixed convection, and MHD parameter to the characteristic of 

temperature profile (𝜃) and velocity profile (𝑓′) have been obtained and discussed. 

Then, the conclusions of this research can be written as follows. 

1. The mathematical model of this research is obtained from the derivation of 

Navier-Stokes including continuity, momentum, and energy equations. These 

equations are transformed into non-dimensional equations. Further, the non-

dimensional equations are transformed into non-similar equations as written 

below. 

𝑓 ′′′ + 2𝑓𝑓 ′′ − 𝑓 ′2 +
9

4
+ 𝜆𝜃 + 2𝐾 𝑓 ′𝑓 ′′′ − 𝑓𝑓 ′′′′ − 𝑓 ′′ 2 − 𝑀  𝑓 ′ −

3

2
 = 0 

and 

1

𝑃𝑟
𝜃′′ + 2𝑓𝜃′ = 0                                                       

2. The non-similar equations are solved numerically using Keller-Box method by 

transforming the higher order into first order. This discretization results are 

solved using newton linearization technique and to find factorization of 

solution using decomposition LU where converging criterion is  𝛿𝑣 𝑥, 0, 𝑡  <

𝜖. 
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3. The numerical results are given in Figure 4 to Figure 11 with the effect of 

Prantdl number, viscoelastic, mixed convection, and MHD parameter to the 

characteristic of temperature profile (𝜃) and velocity profile (𝑓′) 

 

APPENDIX 

In this section, we present the technique to get the radial distance of 

sphere𝑟 (𝑥 ) in equation (1). We only focus on some variables and parameters, such 

as diameter of circle of 𝑎, radial distance of 𝑟 , 𝑥 -axis (along a surface of circle), 

and angle of 𝑥 /𝑎 as shown Figure 12. 

 

Figure 12. Geometry of Physical Model 

 

Figure 12 is the geometry of main problem that we want to write here and 

when we focus on red area in Figure 12, we will find a geometry of triangle. 

Furthermore, we will ignore 𝑥 -axis as shown in Figure 13. 

 

Figure 13. Geometry of Physical Model Without Arc of Circle 𝑥  
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According to Figure 13, we can find the radial distance of 𝑟  by finding the 

value of 𝑝 firstly. To do that, we can use the formula of triangle. 

𝑝2 = 𝑠1
2 + 𝑠2

2 − 2𝑠1𝑠2 𝑐𝑜𝑠 𝜃 

In this case, 𝑠1 and 𝑠2 are sides of triangle, where 𝑠1 = 𝑠2 = 𝑎. Furthermore, we 

obtain 

𝑝2 = 𝑎2 + 𝑎2 − 2𝑎2 cos 𝜃  

= 2𝑎2 − 2𝑎2 cos 𝜃  

= 2𝑎2 1 − cos 𝜃   

Since cos 𝜃 = 1 − 2 sin2  
𝜃

2
 ⟺ 1 − cos 𝜃 = 2 sin2  

𝜃

2
 , then obtained 

𝑝2 = 2𝑎2  2 sin2  
𝜃

2
    

= 4𝑎2 sin2  
𝜃

2
   

which gives 

𝑝 = ±2𝑎 sin  
𝜃

2
  

The last step is to find the radial distance of 𝑟  by using the Pythagoras formula of 

two triangles as shown in Figure 14. 

 

Figure 14. Geometry of physical model in a triangle 
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which gives the formula 

𝑎2 −  𝑎 − 𝑚 2 =  2𝑎 sin  
𝜃

2
  

2

− 𝑚2  

⟺ 𝑎2 −  𝑎2 − 2𝑎𝑚 + 𝑚2 = 4𝑎2 sin2  
𝜃

2
 − 𝑚2  

⟺ 2𝑎𝑚 − 𝑚2 = 4𝑎2 sin2  
𝜃

2
 − 𝑚2  

⟺ 2𝑎𝑚 = 4𝑎2 sin2  
𝜃

2
   

⟺ 𝑚 = 2𝑎 sin2  
𝜃

2
   

The next step is to substitute the value of 𝑚 into the following formula. 

𝑟 =  𝑝2 − 𝑚2 

Then, one has 

𝑟 =   2𝑎 sin  
𝜃

2
  

2

−  2𝑎 sin2  
𝜃

2
  

2

  

=  4𝑎2 sin2  
𝜃

2
 − 4𝑎2 sin4  

𝜃

2
   

=  4𝑎2 sin2  
𝜃

2
  1 − sin2  

𝜃

2
    

=  4𝑎2 𝑠𝑖𝑛2  
𝜃

2
 𝑐𝑜𝑠2  

𝜃

2
   

= 2𝑎 sin  
𝜃

2
 cos  

𝜃

2
   

= 𝑎  2 sin  
𝜃

2
 cos  

𝜃

2
    

= 𝑎 sin 𝜃  

Finally, we assume 𝜃 = 𝑥 /𝑎, then we obtain the desired result of radial distance 

𝑟 = 𝑎 𝑠𝑖𝑛 (𝑥 /𝑎). 
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