Mengenal Vaksin dan Vaksinasi dalam Pandemi COVID-19

Isi Artikel Utama

Aprilia Paramitasari

Abstrak

Abstract

The pandemic of COVID-19, which has put a burden on health systems in various parts of the world, requires comprehensive treatment, one of which is vaccination. Vaccination helps the body’s system to produce potent immunity to reduce the risk of infection, morbidity, and mortality due to COVID-19. However, there is a challenge to the existence of this specific vaccine, namely the sars-cov-2 mutation that continues to occur.

Keywords: Vaccine, COVID-19, Heterologous Primer-Booster, Cell Memory, Antibody

Rincian Artikel

Referensi

  1. Daftar Pustaka
  2. Erlina Burhan, Susanto AD, Nasution SA, Ginanjar E, Pitoyo CW, Susilo A, et al. Agustus 2020 PEDOMAN TATALAKSANA COVID-19. 2020.
  3. Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E. A comprehensive review of COVID-19 characteristics. Vol. 22, Biological Procedures Online. 2020.
  4. WHO. COVID-19 Worldwide Data [Internet]. 2021 [cited 2021 Mar 5]. Available from: https://covid19.who.int/
  5. peta-sebaran-covid19 @ covid19.go.id [Internet]. Available from: https://covid19.go.id/peta-sebaran-covid19
  6. COVID-19 Indonesia Data [Internet]. 2021 [cited 2021 Mar 5]. Available from: https://covid19.who.int/region/searo/country/id
  7. Protokol | Covid19.go.id [Internet]. Available from: https://covid19.go.id/p/protokol
  8. data-vaksinasi-covid-19-update-18-oktober-2021 @ covid19.go.id [Internet]. Available from: https://covid19.go.id/berita/data-vaksinasi-covid-19-update-18-oktober-2021
  9. Pharmacist. Vaccine administration by pharmacists—statewide protocol. Iac. 2020;11:7–8.
  10. vaccines-and-immunization-what-is-vaccination @ www.who.int [Internet]. Available from: https://www.who.int/news-room/q-a-detail/vaccines-and-immunization-what-is-vaccination
  11. Bol KF, Aarntzen EHJG, Pots JM, Olde Nordkamp MAM, van de Rakt MWMM, Scharenborg NM, et al. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity. Cancer Immunol Immunother. 2016;65(3):327–39.
  12. Du P. Human papillomavirus infection and cervical cancer in HIV+ women. Vol. 177, Cancer Treatment and Research. 2019. 105–129 p.
  13. Ledford H. What the immune response to the coronavirus says about the prospects for a vaccine. Nature. 2020;585(7823):20–1.
  14. Plotkin SA, Orenstein WA, Offit PA, Edwards KM. Plotkin’s vaccine. 7th ed. Philadelphia: Elsevier Ltd; 2018. 16–34 p.
  15. Plotkin. Different-Types-Vaccines @ Www.Historyofvaccines.Org [Internet]. 2018. Available from: https://www.historyofvaccines.org/content/articles/different-types-vaccines
  16. Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 8th ed. Philadelphia: Elsevier Ltd; 2015. 51–86 p.
  17. Donelli G. Advances in Microbiology, Infectious Diseases and Public Health [Internet]. Vol. 1. 2016. 124 p. Available from: https://books.google.com/books?id=88ftCwAAQBAJ&pgis=1
  18. WHO Landscape of COVID-19 Vaccine Development.
  19. Batah AM, Ahmad TA. The development of ghost vaccines trials. Expert Rev Vaccines [Internet]. 2020 Jun 2;19(6):549–62. Available from: https://doi.org/10.1080/14760584.2020.1777862
  20. Cooney E. How nanotechnology helps mRNA Covid-19 vaccines work [Internet]. Available from: https://www.statnews.com/2020/12/01/how-nanotechnology-helps-mrna-covid19-vaccines-work/
  21. Kim W, Liau LM. Dendritic Cell Vaccines for Brain Tumors. Bone. 2009;23(1):1–7.
  22. Lowe. Plasmid DNA as Prophylactic and Therapeutic vaccines for Cancer and Infectious Diseases. Plasmids: Current Research and Future Trends. Caister Acad Press. 2008;
  23. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol [Internet]. 2021;21(2):83–100. Available from: http://dx.doi.org/10.1038/s41577-020-00479-7
  24. Geginat J, Paroni M, Maglie S, Alfen JS, Kastirr I, Gruarin P, et al. Plasticity of human CD4 T cell subsets. Front Immunol. 2014;5(DEC):1–10.
  25. Bentebibel SE, Lopez S, Obermoser G, Schmitt N, Mueller C, Harrod C, et al. Induction of ICOS+CXCR3+CXCR5+ T H cells correlates with antibody responses to influenza vaccination. Sci Transl Med. 2013;5(176):1–19.
  26. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Vol. 24, Journal of Advanced Research. 2020.
  27. He Q, Mao Q, An C, Zhang J, Gao F, Bian L, et al. Heterologous prime-boost: breaking the protective immune response bottleneck of COVID-19 vaccine candidates. Emerg Microbes Infect. 2021;10(1):629–37.
  28. Annette E. five-things-know-about-mixing-and-matching-coronavirus-vaccines @ ec.europa.eu [Internet]. Available from: https://ec.europa.eu/research-and-innovation/en/horizon-magazine/five-things-know-about-mixing-and-matching-coronavirus-vaccines
  29. Zagury D, Bernard J, Cheynier R, Desportes I, Leonard R, Fouchard M, et al. A group specific anamnestic immune reaction against HIV-1 induced by a candidate vaccine against AIDS. Nature. 1988 Apr;332(6166):728–31.
  30. Khoo N, Huat K, Ming J, Lim E, Gill US, Alwis R De, et al. Differential immunogenicity of homologous versus heterologous boost in Ad26 . COV2 . S vaccine recipients Corresponding Author : 2021;
  31. Schmidt T, Klemis V, Schub D, Mihm J, Hielscher F, Marx S, et al. Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination. Nat Med [Internet]. 2021;27(9):1530–5. Available from: http://dx.doi.org/10.1038/s41591-021-01464-w
  32. Shaw RH, Stuart A, Greenland M, Liu X, Van-Tam JSN, Snape MD. Heterologous prime-boost COVID-19 vaccination: initial reactogenicity data. Lancet. 2021;397(10289):2043–6.