Convolutional Neural Network (CNN) sebagai Metode Pendeteksi Penderita covid-19 pada x-ray Paru-Paru Manusia

Mas Nurul Achmadiah, Julianto Muchtadirul Hasan, Novendra Setyawan

Sari

Pandemi COVID-19 adalah pandemi dengan penyebaran yang cepat hingga ke seluruh dunia. Dampak dari pandemi COVID-19 menyebabkan penurunan hampirdisemua sektor terutama di sektor kesehatan. Sejauh ini, deteksi pasien terpapar covid atau tidak berdasar pada PCR (polymerase chain reaction) dan swab. Hal ini dinilai kurang efektif dikarenakan penderita COVID-19 makin bertambah dan berbanding terbalik dengan tenaga medis masih terbatas. Pengecekan dengan metode tersebut membutuhkan waktu lebih serta diagnosis yang akurat. Pada penelitian ini penulis mengembangakan metode deep learning Convolutional NeuralNetworks (CNN) untuk suatu sistem pendeteksian COVID-19. Dengan memanfaatkan algoritma pembelajaran Convolutional Neural Networks (CNN) sistem dapat mendeteksi paru-paru berdasarkan gambar X-Ray paru-paru. Hasil klasifikasi yang didapatkan dengan menggunakan CNN  memiliki accuarcysebesar 98%.

Teks Lengkap:

PDF PDF

Referensi

H. A. Rothan and S. N. Byrareddy, “The Epidemiology And Pathogenesis Of Coronavirus Disease (COVID-19) Outbreak,” J. Autoimmun., vol. 109, no. February, p. 102433, 2020, doi: 10.1016/j.jaut.2020.102433.

G. Pascarella et al., “COVID-19 Diagnosis And Management: A Comprehensive Review,” J. Intern. Med., vol. 288, no. 2, pp. 192–206, 2020, doi: 10.1111/joim.13091.

N. Y. Damo, J. P. Porotu’o, G. I. Rambert, and F. E. S. Rares, “Diagnostik Coronavirus Disease 2019 (COVID-19) dengan Pemeriksaan Laboratorium Mikrobiologi Klinik,” J. e-Biomedik, vol. 9, no. 1, pp. 77–86, 2021, doi: 10.35790/ebm.v9i1.31899.

J. Ren, R. Ren, M. Green, and X. Huang, “Defect Detection from X-Ray Images Using A Three-Stage Deep Learning Algorithm,” 2019 IEEE Can. Conf. Electr. Comput. Eng. CCECE 2019, pp. 1–4, 2019, doi: 10.1109/CCECE.2019.8861944.

Garlapati, K., Kota, N., Mondreti, Y. S., Gutha, P., & Nair, A. K. (2021, June). Detection of COVID-19 Using X-ray Image Classification. In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 745-750). IEEE.

A. A. Khan, S. Shafiq, R. Kumar, J. Kumar, and A. U. Haq, “H3DNN: 3D Deep Learning Based Detection of COVID-19 Virus using Lungs Computed Tomography,” 2020 17th Int. Comput. Conf. Wavelet Act. Media Technol. Inf. Process. ICCWAMTIP 2020, pp. 183–186, 2020, doi: 10.1109/ICCWAMTIP51612.2020.9317357.

D. F. Eljamassi and A. Y. Maghari, “COVID-19 Detection from Chest X- ray Scans using Machine Learning,” Proc. - 2020 Int. Conf. Promis. Electron. Technol. ICPET 2020, pp. 1–4, 2020, doi: 10.1109/ICPET51420.2020.00009.

Z. Liang, J. X. Huang, J. Li, and S. Chan, “Enhancing Automated COVID-19 Chest X- ray Diagnosis by Image-to-Image GAN Translation,” Proc. - 2020 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2020, pp. 1068–1071, 2020, doi: 10.1109/BIBM49941.2020.9313466.

P. K. Sethy, S. K. Behera, P. K. Ratha, and P. Biswas, “Detection of coronavirus disease (COVID-19) based on deep features and support vector machine,” Int. J. Math. Eng. Manag. Sci., vol. 5, no. 4, pp. 643–651, 2020, doi: 10.33889/IJMEMS.2020.5.4.052.

TSNP Putri, M Al Fikih, N Setyawan, “Face Mask Detection Covid-19 Using Convolutional Neural Network (CNN)”, Prosiding SENTRA (Seminar Teknologi dan Rekayasa), 27-32, issue 6, 2021

N Setyawan, TSNP Putri, M Al Fikih, N Kasan, “Comparative Study of CNN and YOLOv3 in Public Health Face Mask Detection”, 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), pages 354-358, 2021

F Mileanasari, F Anisa, MS Abdillah, N Setyawan, “monitoring of physical distance for covid-19 public health using you only look once”, Prosiding SENTRA (Seminar Teknologi dan Rekayasa), Issue 6, Pages 33-38, 2021

N Setyawan, NA Mardiyah, K Hidayat, “Deteksi dan Prediksi Trajektori Objek Bergerak dengan Omni-Vision Menggunakan Pso-Nn dan Interpolasi Polynomial”, jurnal Multitek Indonesia Vol 13, issue 1, pages 66-80, 2019

N Setyawan, K Hidayat, NA Mardiyah, “Pengenalan Posisi Objek dari Sistem Kamera Omni-Vision Menggunakan PSO-NN dan Scan Lines Pada Robot Sepak Bola“,Prosiding SENTRA (Seminar Teknologi dan Rekayasa), issue 4, pages IV-27-IV-33, 2018.

Anarki, G.A., Auliasari, K., Orisa, M., “Application of Haar Cascade Method in Mask Detection Application” Jurnal Mahasiswa Teknik Informatika (JATI) Vol 5 No. 1, 2021

Lubis, A., R., Prayudani, S., Fatmi, Y., Julham, Lase., Y., Y., Al-khowarizmi, “Detection of HOG Features on Tuberco;osis X-Ray Result Using SVM and KNN”, 2nd International Conference on Innovative and Creative Information Technology (ICITech), 2021


DOI: http://dx.doi.org/10.30651/cl.v5i2.12549

Refbacks

  • Saat ini tidak ada refbacks.