Convolutional Neural Network (CNN) sebagai Metode Pendeteksi Penderita covid-19 pada x-ray Paru-Paru Manusia
Sari
Referensi
H. A. Rothan and S. N. Byrareddy, “The Epidemiology And Pathogenesis Of Coronavirus Disease (COVID-19) Outbreak,” J. Autoimmun., vol. 109, no. February, p. 102433, 2020, doi: 10.1016/j.jaut.2020.102433.
G. Pascarella et al., “COVID-19 Diagnosis And Management: A Comprehensive Review,” J. Intern. Med., vol. 288, no. 2, pp. 192–206, 2020, doi: 10.1111/joim.13091.
N. Y. Damo, J. P. Porotu’o, G. I. Rambert, and F. E. S. Rares, “Diagnostik Coronavirus Disease 2019 (COVID-19) dengan Pemeriksaan Laboratorium Mikrobiologi Klinik,” J. e-Biomedik, vol. 9, no. 1, pp. 77–86, 2021, doi: 10.35790/ebm.v9i1.31899.
J. Ren, R. Ren, M. Green, and X. Huang, “Defect Detection from X-Ray Images Using A Three-Stage Deep Learning Algorithm,” 2019 IEEE Can. Conf. Electr. Comput. Eng. CCECE 2019, pp. 1–4, 2019, doi: 10.1109/CCECE.2019.8861944.
Garlapati, K., Kota, N., Mondreti, Y. S., Gutha, P., & Nair, A. K. (2021, June). Detection of COVID-19 Using X-ray Image Classification. In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 745-750). IEEE.
A. A. Khan, S. Shafiq, R. Kumar, J. Kumar, and A. U. Haq, “H3DNN: 3D Deep Learning Based Detection of COVID-19 Virus using Lungs Computed Tomography,” 2020 17th Int. Comput. Conf. Wavelet Act. Media Technol. Inf. Process. ICCWAMTIP 2020, pp. 183–186, 2020, doi: 10.1109/ICCWAMTIP51612.2020.9317357.
D. F. Eljamassi and A. Y. Maghari, “COVID-19 Detection from Chest X- ray Scans using Machine Learning,” Proc. - 2020 Int. Conf. Promis. Electron. Technol. ICPET 2020, pp. 1–4, 2020, doi: 10.1109/ICPET51420.2020.00009.
Z. Liang, J. X. Huang, J. Li, and S. Chan, “Enhancing Automated COVID-19 Chest X- ray Diagnosis by Image-to-Image GAN Translation,” Proc. - 2020 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2020, pp. 1068–1071, 2020, doi: 10.1109/BIBM49941.2020.9313466.
P. K. Sethy, S. K. Behera, P. K. Ratha, and P. Biswas, “Detection of coronavirus disease (COVID-19) based on deep features and support vector machine,” Int. J. Math. Eng. Manag. Sci., vol. 5, no. 4, pp. 643–651, 2020, doi: 10.33889/IJMEMS.2020.5.4.052.
TSNP Putri, M Al Fikih, N Setyawan, “Face Mask Detection Covid-19 Using Convolutional Neural Network (CNN)”, Prosiding SENTRA (Seminar Teknologi dan Rekayasa), 27-32, issue 6, 2021
N Setyawan, TSNP Putri, M Al Fikih, N Kasan, “Comparative Study of CNN and YOLOv3 in Public Health Face Mask Detection”, 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), pages 354-358, 2021
F Mileanasari, F Anisa, MS Abdillah, N Setyawan, “monitoring of physical distance for covid-19 public health using you only look once”, Prosiding SENTRA (Seminar Teknologi dan Rekayasa), Issue 6, Pages 33-38, 2021
N Setyawan, NA Mardiyah, K Hidayat, “Deteksi dan Prediksi Trajektori Objek Bergerak dengan Omni-Vision Menggunakan Pso-Nn dan Interpolasi Polynomial”, jurnal Multitek Indonesia Vol 13, issue 1, pages 66-80, 2019
N Setyawan, K Hidayat, NA Mardiyah, “Pengenalan Posisi Objek dari Sistem Kamera Omni-Vision Menggunakan PSO-NN dan Scan Lines Pada Robot Sepak Bola“,Prosiding SENTRA (Seminar Teknologi dan Rekayasa), issue 4, pages IV-27-IV-33, 2018.
Anarki, G.A., Auliasari, K., Orisa, M., “Application of Haar Cascade Method in Mask Detection Application” Jurnal Mahasiswa Teknik Informatika (JATI) Vol 5 No. 1, 2021
Lubis, A., R., Prayudani, S., Fatmi, Y., Julham, Lase., Y., Y., Al-khowarizmi, “Detection of HOG Features on Tuberco;osis X-Ray Result Using SVM and KNN”, 2nd International Conference on Innovative and Creative Information Technology (ICITech), 2021
DOI: http://dx.doi.org/10.30651/cl.v5i2.12549
Refbacks
- Saat ini tidak ada refbacks.