Isi Artikel Utama

Abstrak

Malaria is almost found all over the world, including Indonesia. WHO data on malaria case transmission in 2020, namely 241 million and 627,000 deaths. Female Anopheles mosquitoes are the main factor in the transmission of parasites, one of which is Plasmodium falciparum which is most dangerous to cause complications to death. Data from the Ministry of Health 2019 the highest transmission in Papua Province is 216,380 cases. The malaria elimination program uses ACT as a treatment therapy for malaria. The first appearance of ACT resistance in Cambodia was in 2008 to Plasmodium falciparum which was associated with the presence of a Kelch 13 gene mutation. The purpose of this study was to identify a mutation of the Kelch 13 gene markers of resistance in Plasmodium falciparum with ACT treatment after 3 days. This type of exploratory study used a population of all patients at the Amban Manokwari Health Center in West Papua, with a total sampling in August-September 2022. Of the 51 and 11 H3 samples met the inclusion criteria using RDT and Microscopic methods. The DNA isolated sample using Favorgen kit then amplified PCR and electrophoresis gel agarose. Then were 7 amplicons seen in the DNA band (±200bp) and confirmed results from PT. Science Genetics (±100bp), then 1 amplicon is continued for sequencing. The sequence results were analyzed using the Bioedit and Mega IX softwere with the alignment of the sequence results. Changes in nucleeid bases and amino acids were obtained so that the mutation of the Kelch 13 gene occurred, 3 mutation variants: substitution (transition & transversion), silent mutation (C3T codon 1 cysteine-cysteine), and missense mutation (T4A codon 2 tryptophan-serine). It can be concluded that the Plasmodium falciparum treatment ACT carriers the Kelch 13 gene mutation as one of the markers of resistance.

 

Keywords: ACT, Plasmodium falciparum, Kelch 13 Gene Mutation.

Rincian Artikel

Biografi Penulis

Budi - Santosa, Universitas Muhammadiyah Semarang

Magister Ilmu Laboratorium Klinis, Lektor Kepala

Referensi

  1. Amato, R., Miotto, O., Woodrow, C. J., Almagro-Garcia, J., Sinha, I., Campino, S., Mead, D., Drury, E., Kekre, M., Sanders, M., Amambua-Ngwa, A., Amaratunga, C., Amenga-Etego, L., Andrianaranjaka, V., Apinjoh, T., Ashley, E., Auburn, S., Awandare, G. A., Baraka, V., Kwiatkowski, D. P. (2016). Genomic epidemiology of artemisinin resistant malaria. ELife, 5(MARCH2016), 1–29. https://doi.org/10.7554/eLife.08714
  2. Anindita, V., Mutiara, H., & Mutiara, U. G. (2017). Mutasi gen kelch 13 dan resistensi Plasmodium falciparum terhadap obat antimalaria golongan artemisinin. Medula, 7(5), 149–153.
  3. Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A. C., Khim, N., Kim, S., Duru, V., Bouchier, C., Ma, L., Lim, P., Leang, R., Duong, S., Sreng, S., Suon, S., Chuor, C. M., Bout, D. M., Ménard, S., Rogers, W. O., Ménard, D. (2014). A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature, 505(7481), 50–55. https://doi.org/10.1038/nature12876
  4. Asif, S. et al. (2021) “PCR Optimization for Beginners: A Step by Step Guide,†Research in Molecular Medicine, 9(2), hal. 81–102. doi: 10.32598/rmm.9.2.1189.1.
  5. Astin, N., Alim, A., & Zainuddin, Z. (2020). Studi Kualitatif Perilaku Masyarakat dalam Pencegahan Malaria di Manokwari Barat, Papua Barat, Indonesia. Jurnal PROMKES, 8(2), 132. https://doi.org/10.20473/jpk.v8.i2.2020.132-145
  6. Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A. C., Khim, N., Kim, S., Duru, V., Bouchier, C., Ma, L., Lim, P., Leang, R., Duong, S., Sreng, S., Suon, S., Chuor, C. M., Bout, D. M., Ménard, S., Rogers, W. O., … Ménard, D. (2014). A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature, 505(7481), 50–55. https://doi.org/10.1038/nature12876
  7. Dondorp, A. M., Nosten, F., Yi, P., Das, D., Hanpithakpong, W., Lee, S. J., Ringwald., Imwong, M., Chotivanich, K., & Lim, P. (2012). Artemisinin Resistance in Plasmodium falciparum Malaria. New England Journal of Medicine, 361(17), 1714–1714. https://doi.org/10.1056/nejmx090050
  8. Fairhurst, Rick M. Arjen, D. M. (2016). Tahan artemisinin plasmodium falciparum malaria. 1–12. https://doi.org/10.1128/microbiolspec.EI10-0013.
  9. Fatchiyah A, Widyarti LE,Rahayu. 2011. Biologi Molekuler Prinsip Dasar Analisis. Erlangga, Malang.
  10. Chhibber-Goel, J., & Sharma, A. (2019). Profiles of Kelch mutations in Plasmodium falciparum across South Asia and their implications for tracking drug resistance. International Journal for Parasitology: Drugs and Drug Resistance, 11(September), 49–58. https://doi.org/10.1016/j.ijpddr.2019.10.001
  11. Kemenkes RI, 2014. (2014). Pedoman manajemen malaria. In Pediatrics for Practitioner. https://doi.org/10.5005/jp/books/12172_38
  12. Kemenkes RI. (2013). Peraturan Menteri Kesehatan RI No. 5 Tahun 2013 Tentang Pedoman Tata Laksana Malaria. Peraturan Menteri Kesehatan RI, 128, 5–62.
  13. Kemenkes RI. (2017). Profil Kesehatan Indonesia 2017 (Vol. 1227, Issue July). https://doi.org/10.1002/qj
  14. Kinansi, R. R., Mayasari, R., & Pratamawati, D. A. (2017). Pengobatan Malaria Kombinasi Artemisinin (ACT) Di Provinsi Papua Barat Tahun 2013. Balaba: Jurnal Litbang Pengendalian Penyakit Bersumber Binatang Banjarnegara, 13(1), 43–54. https://doi.org/10.22435/blb.v13i1.4921.43-54
  15. Mishra, N., Bharti, R. S., Mallick, P., Singh, O. P., Srivastava, B., Rana, R., Phookan, S., Gupta, H. P., Ringwald, P., & Valecha, N. (2016). Emerging polymorphisms in falciparum Kelch 13 gene in Northeastern region of India. Malaria Journal, 15(1), 4–9. https://doi.org/10.1186/s12936-016-1636-4
  16. Mohon, A. N., Alam, M. S., Bayih, A. G., Folefoc, A., Shahinas, D., Haque, R., & Pillai, D. R. (2014). Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009-2013). Malaria Journal, 13(1), 1–6. https://doi.org/10.1186/1475-2875-13-431
  17. Parambang, S. J., Hasmono, D., & Suwarko, J. (2021). Studi Pola Pemberian Artemisinin-Based Combination Therapy pada Pasien Malaria di RSUD Supiori Papua. Indonesian Journal of Clinical Pharmacy, 10(1), 30. https://doi.org/10.15416/ijcp.2021.10.1.30
  18. Phyo, A. P., Nkhoma, S., Stepniewska, K., Ashley, E. A., Nair, S., McGready, R., Moo, C. L., Al-Saai, S., Dondorp, A. M., Lwin, K. M., Singhasivanon, P., Day, N. P. J., White, N. J., Anderson, T. J. C., & Nosten, F. (2012). Emergence of artemisinin-resistant malaria on the western border of Thailand: A longitudinal study. The Lancet, 379(9830), 1960–1966. https://doi.org/10.1016/S0140-6736(12)60484-X
  19. Rachmad, B. (2019). Isolasi dan identifikasi mutasi gen Pfk13 (PFD7_1343700) sebagai penanda rsistensi artemisinin pada isolat plasmodium falciparum asal lampung. Prosiding Dalam Rangka Rakernas XIV & Temu Ilmiah XXII 2019 ISOLASI, 13(1), 25–40.
  20. Rachmad, B., Antasari, R., Ghiffari, A., (2021). Identifikasi Mutasi Gen PfRPB9 Sebagai Biomarker Resistensi Plasmodium falciparum Terhadap Artemisinin Dan Derivatnya Pada Pasien Malaria Asal Lampung. Prosiding Dalam Rangka. 45–53.
  21. Rachmad, B. (2019). Isolasi dan identifikasi mutasi gen Pfk13 (PFD7_1343700) sebagai penanda rsistensi artemisinin pada isolat plasmodium falciparum asal lampung. Prosiding Dalam Rangka Rakernas XIV & Temu Ilmiah XXII 2019 ISOLASI, 13(1), 25–40.
  22. B Reece, J. et al. (2021) Campbell Biology Twelfth Edition. 12th ed. United State of America: Pearson Education.
  23. Suwandi, J. F. (2015). Gen PfATP6 dan Resistensi Plasmodium falciparum Terhadap Golongan Artemisinin. Juke Unila, 5(9)(9), 141–146.
  24. Wang, J., Zhang, C. J., Chia, W. N., Loh, C. C. Y., Li, Z., Lee, Y. M., He, Y., Yuan, L. X., Lim, T. K., Liu, M., Liew, C. X., Lee, Y. Q., Zhang, J., Lu, N., Lim, C. T., Hua, Z. C., Liu, B., Shen, H. M., Tan, K. S. W., & Lin, Q. (2015). Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nature Communications, 6. https://doi.org/10.1038/ncomms10111
  25. WHO. (2020). Regional messaging. World Malaria Report 2020, 1–12.
  26. Winzeler, E. A. (2017). Longitudinal study of Plasmodium pathogens identifies new loci associated with artemisinin resistance. Genome Biology, 18(1), 17–19. https://doi.org/10.1186/s13059-017-1219-x