Sistem Identifikasi Wajah Personal dan Hemat Daya dengan ESP32 dan OV2640 Berbasis Model ResNet-29
Abstrak
Sistem identifikasi wajah memiliki peran penting dalam kehidupan sehari-hari dan banyak diintegrasikan di berbagai aplikasi. Penelitian ini bertujuan untuk mengembangkan sistem identifikasi wajah yang hemat daya, terjangkau, dan dapat dikustomisasi menggunakan device ESP32-CAM dan metode jaringan syaraf tiruan. Metode tradisional identifikasi wajah sering kali menghadapi kesulitan dalam menangani variasi pose, pencahayaan, dan ekspresi wajah. Dengan menggunakan model jaringan syaraf tiruan, ResNet-29, sistem ini mampu menghasilkan embedding wajah yang akurat dan efisien untuk aplikasi real-time. Evaluasi sistem menunjukkan bahwa penggunaan ESP32-CAM sebagai perangkat pengambil gambar dan server video stream, serta komputer sebagai pemroses data, dapat meningkatkan akurasi dan keandalan sistem pengenalan wajah. Eksperimen kami menunjukkan model dapat mencapai akurasi 80% pada kondisi ekstrim.
Artikel teks lengkap
Referensi
M. Wang and W. Deng, “Deep face recognition: A survey,” Neurocomputing, vol. 429, pp. 215–244, Mar. 2021, doi: 10.1016/j.neucom.2020.10.081.
“Challenges and opportunities in biometric security: A survey: Information Security Journal: A Global Perspective: Vol 31, No 1.” Accessed: Jul. 05, 2024. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/19393555.2021.1873464
A. Sharifara, M. S. Mohd Rahim, and Y. Anisi, “A general review of human face detection including a study of neural networks and Haar feature-based cascade classifier in face detection,” in 2014 International Symposium on Biometrics and Security Technologies (ISBAST), Aug. 2014, pp. 73–78. doi: 10.1109/ISBAST.2014.7013097.
C. Rahmad, R. A. Asmara, D. R. H. Putra, I. Dharma, H. Darmono, and I. Muhiqqin, “Comparison of Viola-Jones Haar Cascade Classifier and Histogram of Oriented Gradients (HOG) for face detection,” IOP Conf. Ser. Mater. Sci. Eng., vol. 732, no. 1, p. 012038, Jan. 2020, doi: 10.1088/1757-899X/732/1/012038.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. Accessed: Jul. 05, 2024. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
A. Maier, A. Sharp, and Y. Vagapov, “Comparative analysis and practical implementation of the ESP32 microcontroller module for the internet of things,” in 2017 Internet Technologies and Applications (ITA), Sep. 2017, pp. 143–148. doi: 10.1109/ITECHA.2017.8101926.
P. Rai and M. Rehman, “ESP32 Based Smart Surveillance System,” in 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Jan. 2019, pp. 1–3. doi: 10.1109/ICOMET.2019.8673463.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2012. Accessed: Jul. 05, 2024. [Online]. Available: https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
“Eigenfaces for Recognition | Journal of Cognitive Neuroscience | MIT Press.” Accessed: Jul. 05, 2024. [Online]. Available: https://direct.mit.edu/jocn/article/3/1/71/3025/Eigenfaces-for-Recognition
M. Anggo and L. Arapu, “Face Recognition Using Fisherface Method,” J. Phys. Conf. Ser., vol. 1028, no. 1, p. 012119, Jun. 2018, doi: 10.1088/1742-6596/1028/1/012119.
G. Zhang, X. Huang, S. Z. Li, Y. Wang, and X. Wu, “Boosting Local Binary Pattern (LBP)-Based Face Recognition,” in Advances in Biometric Person Authentication, S. Z. Li, J. Lai, T. Tan, G. Feng, and Y. Wang, Eds., Berlin, Heidelberg: Springer, 2005, pp. 179–186. doi: 10.1007/978-3-540-30548-4_21.
T. Ahonen, A. Hadid, and M. Pietikainen, “Face Description with Local Binary Patterns: Application to Face Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp. 2037–2041, Dec. 2006, doi: 10.1109/TPAMI.2006.244.
K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition.” arXiv, Apr. 10, 2015. doi: 10.48550/arXiv.1409.1556.
C. Szegedy et al., “Going Deeper with Convolutions.” arXiv, Sep. 16, 2014. doi: 10.48550/arXiv.1409.4842.
“Identity Mappings in Deep Residual Networks | SpringerLink.” Accessed: Jul. 05, 2024. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38
H.-W. Ng and S. Winkler, “A data-driven approach to cleaning large face datasets,” in 2014 IEEE International Conference on Image Processing (ICIP), Oct. 2014, pp. 343–347. doi: 10.1109/ICIP.2014.7025068.
Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VGGFace2: A dataset for recognising faces across pose and age.” arXiv, May 13, 2018. Accessed: Jul. 05, 2024. [Online]. Available: http://arxiv.org/abs/1710.08092
G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments”.
O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep Face Recognition,” in Procedings of the British Machine Vision Conference 2015, Swansea: British Machine Vision Association, 2015, p. 41.1-41.12. doi: 10.5244/C.29.41
Penulis
Hak Cipta (c) 2024 Muhamad Amirul Haq, Aswin Rosadi, Farid Wahyu Wicaksono
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.
Hak cipta berada di tangan penulis
Artikel yang terbit dapat digunakan di bawah lisensi Creative Commons Atribusi Non-Komersial 4.0 InternasionalÂ
Anda diperbolehkan:
Berbagi menyalin dan menyebarluaskan kembali materi ini dalam bentuk atau format apapun;
Adaptasi menggubah, mengubah, dan membuat turunan dari materi ini
Pemberi lisensi tidak dapat mencabut ketentuan di atas sepanjang Anda mematuhi ketentuan lisensi ini.
Berdasarkan ketentuan berikut:
Atribusi Anda harus mencantumkan nama yang sesuai, mencantumkan tautan terhadap lisensi, dan menyatakan bahwa telah ada perubahan yang dilakukan. Anda dapat melakukan hal ini dengan cara yang sesuai, namun tidak mengisyaratkan bahwa pemberi lisensi mendukung Anda atau penggunaan Anda.
NonKomersial Anda tidak dapat menggunakan materi ini untuk kepentingan komersial.