Pengembangan Metode RULA Berbasis Image Processing dan Deep Learning untuk Penilaian Risiko Ergonomi Postur Kerja

Yessie Ardina Kusuma (1), Ridho Akbar (2)
(1) Universitas Muhammadiyah Surabaya, Indonesia,
(2) Universitas Muhammadiyah Surabaya, Indonesia

Abstrak

Penelitian ini mengusulkan sistem perhitungan indeks risiko secara otomatis dengan memanfaatkan metode evaluasi Rapid Upper Limb Assessment (RULA). Sistem yang diusulkan mencakup perancangan hardware dan software yang menggabungkan sistem deteksi postur kerja tanpa memerlukan penambahan alat pada tubuh, melainkan menggunakan pemrosesan gambar dan memanfaatkan model deep learning MediaPipe. Software yang diusulkan secara spesifik mengestimasi postur kerja dari gambar yang diperoleh melalui webcam real-time atau gambar yang sudah ada. Selanjutnya, software menghitung sudut tubuh dan menghasilkan skor serta indeks risiko RULA. Pendekatan ini telah berhasil dievaluasi dalam skala laboratorium, dan penelitian ini memberikan gambaran komprehensif tentang sistem yang diusulkan, termasuk hasil validasi. Implementasi dan perbandingan hasil juga dilakukan dengan merujuk pada jurnal terkait. Sistem yang diusulkan memperoleh skor RULA 4, sedangkan jurnal pembanding mmeperoleh skor RULA 6. Sistem yang diusulkan menunjukkan bahwa sistem yang diusulkan secara efektif dapat memprediksi sudut kriteria RULA dengan signifikan, dan melakukan analisis RULA dengan akurasi yang sebanding atau bahkan lebih baik dibandingkan dengan analisis manual. Keefektifan ini tetap berlaku bahkan dalam kondisi yang tidak terduga yang biasanya dihadapi di lingkungan kerja.


Kata kunci: penilaian resiko ergonomi, pemrosesan gambar, pembelajaran mendalam, rula, manufaktur

Artikel teks lengkap

##article.generated_from_xml##

Referensi

B. D. Lowe, P. G. Dempsey, and E. M. Jones, “Ergonomics assessment methods used by ergonomics professionals,” Appl. Ergon., vol. 81, p. 102882, 2019.

L. McAtamney and E. N. Corlett, “RULA: a survey method for the investigation of work-related upper limb disorders,” Appl. Ergon., vol. 24, no. 2, pp. 91–99, 1993.

L. McAtamney and S. Hignett, “Rapid entire body assessment,” in Handbook of human factors and ergonomics methods, CRC press, 2004, pp. 97–108.

G. B. Scott and N. R. Lambe, “Working practices in a perchery system, using the OVAKO Working posture Analysing System (OWAS),” Appl. Ergon., vol. 27, no. 4, pp. 281–284, 1996.

D. K. Sofyan, “Determination of Musculoskeletal Disorders (MSDs) complaints level with Nordic Body Map (NBM),” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 505, no. 1, p. 12033.

G. C. David, “Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders,” Occup. Med. (Chic. Ill)., vol. 55, no. 3, pp. 190–199, 2005.

R. Y. Zare M., Biau S., Croq M., “Development of a biomechanical method for ergonomic evaluation: Comparison with observational method,” Int. J. Soc. Manag. Econ. Bus. Eng., vol. 8, pp. 223–227, 2014.

“Ergonomics—Manual handling—Part 3: Handling of Low Loads at High Frequency,” Int. Organ. Stand. Geneva, Switz., vol. 11228, p. 3, 2007.

C. D. Occhipinti E., “IEA/WHO toolkit for WMSDs prevention: Criteria and practical tools for a step by step approach,” Work, vol. 41, pp. 3937–3944, 2012.

C. E. Bagagiolo G., Laurendi V., “Safety Improvements on Wood Chippers Currently in Use: A Study on Feasibility in the Italian Context,” Agriculture, vol. 7, no. 98, 2017.

P. A. Potočnik I., “Forestry Ergonomics and Occupational Safety in High Ranking Scientific Journals from 2005–2016,” Croat. J. For. Eng., vol. 38, pp. 291–310, 2017.

F. Vignais, N., Miezal, M., Bleser, G., Mura, K., Gorecky, D., & Marin, “Innovative system for real-time ergonomic feedback in industrial manufacturing,” Appl. Ergon., vol. 44, no. 4, pp. 566–574, 2013.

A. Malaisé, P. Maurice, F. Colas, and S. Ivaldi, “Activity recognition for ergonomics assessment of industrial tasks with automatic feature selection,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1132–1139, 2019.

B. Busch, G. Maeda, Y. Mollard, M. Demangeat, and M. Lopes, “Postural optimization for an ergonomic human-robot interaction,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 2778–2785.

J.-L. Perez-Medina, K. B. Jimenes-Vargas, L. Leconte, S. Villarreal, Y. Rybarczyk, and J. Vanderdonckt, “ePHoRt: towards a reference architecture for tele-rehabilitation systems,” IEEE Access, vol. 7, pp. 97159–97176, 2019.

I.-J. Kim, “The role of ergonomics for construction industry safety and health improvements,” J. Ergon., vol. 7, no. 2, pp. 2–5, 2017.

L. Punnett and D. H. Wegman, “Work-related musculoskeletal disorders: the epidemiologic evidence and the debate,” J. Electromyogr. Kinesiol., vol. 14, no. 1, pp. 13–23, 2004.

D. Battini, A. Persona, and F. Sgarbossa, “Innovative real-time system to integrate ergonomic evaluations into warehouse design and management,” Comput. Ind. Eng., vol. 77, pp. 1–10, 2014.

C. Huang, W. Kim, Y. Zhang, and S. Xiong, “Development and validation of a wearable inertial sensors-based automated system for assessing work-related musculoskeletal disorders in the workspace,” Int. J. Environ. Res. Public Health, vol. 17, no. 17, p. 6050, 2020.

N. Vignais, M. Miezal, G. Bleser, K. Mura, D. Gorecky, and F. Marin, “Innovative system for real-time ergonomic feedback in industrial manufacturing,” Appl. Ergon., vol. 44, no. 4, pp. 566–574, 2013.

V. M. Manghisi, A. E. Uva, M. Fiorentino, M. Gattullo, A. Boccaccio, and A. Evangelista, “Automatic ergonomic postural risk monitoring on the factory shopfloor‒the ergosentinel tool,” Procedia Manuf., vol. 42, pp. 97–103, 2020.

A. Abobakr et al., “RGB-D ergonomic assessment system of adopted working postures,” Appl. Ergon., vol. 80, pp. 75–88, 2019.

W. Kim, J. Sung, D. Saakes, C. Huang, and S. Xiong, “Ergonomic postural assessment using a new open-source human pose estimation technology (OpenPose),” Int. J. Ind. Ergon., vol. 84, p. 103164, 2021.

P. Plantard, E. Auvinet, A.-S. Le Pierres, and F. Multon, “Pose estimation with a kinect for ergonomic studies: Evaluation of the accuracy using a virtual mannequin,” Sensors, vol. 15, no. 1, pp. 1785–1803, 2015.

M. Ota et al., “Verification of reliability and validity of motion analysis systems during bilateral squat using human pose tracking algorithm,” Gait Posture, vol. 80, pp. 62–67, 2020.

L. Li, T. Martin, and X. Xu, “A novel vision-based real-time method for evaluating postural risk factors associated with musculoskeletal disorders,” Appl. Ergon., vol. 87, p. 103138, 2020.

J. G. da Silva Neto, J. M. X. N. Teixeira, and V. Teichrieb, “Analyzing embedded pose estimation solutions for human behaviour understanding,” in Anais Estendidos do XXII Simpósio de Realidade Virtual e Aumentada, 2020, pp. 30–34.

T. Agostinelli, A. Generosi, S. Ceccacci, R. K. Khamaisi, M. Peruzzini, and M. Mengoni, “Preliminary validation of a low-cost motion analysis system based on RGB cameras to support the evaluation of postural risk assessment,” Appl. Sci., vol. 11, no. 22, p. 10645, 2021.

V. Chunduru, M. Roy, and R. G. Chittawadigi, “Hand tracking in 3d space using mediapipe and pnp method for intuitive control of virtual globe,” in 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), 2021, pp. 1–6.

A. Halder and A. Tayade, “Real-time vernacular sign language recognition using mediapipe and machine learning,” J. homepage www. ijrpr. com ISSN, vol. 2582, p. 7421, 2021.

A. Altieri, S. Ceccacci, A. Talipu, and M. Mengoni, “A low cost motion analysis system based on RGB cameras to support ergonomic risk assessment in real workplaces,” in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2020, vol. 83983, p. V009T09A067.

L. Li and X. Xu, “A deep learning-based RULA method for working posture assessment,” in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2019, vol. 63, no. 1, pp. 1090–1094.

D. Mijatovic, “RSI Day Webinar Series: Ergonomic Prevention Tools,” OHCOW, 2022. [Online]. Available: https://www.ohcow.on.ca/wp-content/uploads/2022/03/rsiDay2022_RULA.pdf.

Penulis

Yessie Ardina Kusuma
Ridho Akbar
ridho.akbar@um-surabaya.ac.id (Kontak utama)
Kusuma, Y. A., & Akbar, R. (2024). Pengembangan Metode RULA Berbasis Image Processing dan Deep Learning untuk Penilaian Risiko Ergonomi Postur Kerja. CYCLOTRON, 7(01), 27–36. https://doi.org/10.30651/cl.v7i01.21684

Rincian Artikel