ANALYSIS OF PHARMACEUTICAL LOGISTICS FORECASTING BY ACT CLASSIFICATION METHODS
DOI:
https://doi.org/10.30651/gjha.v1i1.26841Kata Kunci:
pharmaceutical logistics, forecasting, exponential smoothing, moving average, t-testAbstrak
Objective: This study aims to evaluate the effectiveness and compare the accuracy of the Exponential Smoothing and Moving Average methods in forecasting pharmaceutical logistics needs at BB Hospital.
Methods: A quantitative approach with a descriptive- comparative design was used. The data analyzed were monthly pharmaceutical logistics needs over a 12-month period, categorized into solid, liquid, and topical dosage forms. Forecasting was performed using Exponential Smoothing and Moving Average methods. Statistical analysis was conducted using ANOVA and independent t-tests to examine the significance of differences in forecasting accuracy.
Results: Both methods showed satisfactory accuracy, as reflected in comparable values of Mean Absolute Deviation (MAD), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE). The ANOVA test revealed a statistically significant difference between the methods (p = 0.000); however, the independent t-test showed a significance value of 0.756, indicating no significant difference in the average forecasting results between the two methods.
Conclusion: Both Exponential Smoothing and Moving Average methods are effective for forecasting pharmaceutical logistics needs. Since no significant difference was found in their average forecasting performance, either method can be applied flexibly based on the hospital’s specific requirements. These findings provide practical insights for strategic decision- making in pharmaceutical inventory management.
Referensi
Alfallah, F., & Sumijan, Y. (2025). Jurnal KomtekInfo Penerapan Artificial Neural Network untuk Memprediksi Persediaan Obat-Obatan Esensial. Jurnal KomtekInfo, 12, 2–3. https://doi.org/10.35134/komtekinfo.v12i1.630
Ariska Putri, U., Budi Prasetijo, A., & Tri Purnami, C. (2023). Sistem Informasi Manajemen Logistik Obat di Pelayanan Farmasi Puskesmas : Literature Review. Media Publikasi Promosi Kesehatan Indonesia (MPPKI), 6(6), 1016–1024. https://doi.org/10.56338/mppki.v6i7.3447
Astuti, R. Y. (2020). Buku Manajemen Kinerja Suparyanto dan Rosad. In
Suparyanto dan Rosad (2015 (Vol. 5, Issue 3).
Azhari, M. A., Setiawan, A., & Darmanto, E. (2025). Penerapan Supply Chain Management Dalam Sistem Informasi Manajemen Distribusi Dan Pengelolaan Stok Farmasi Berbasis Supply Chain Management Pada Instalasi Farmasi Kabupaten Kudus. Jurnal Teknik Informatika, 5(1).
Azzahra, N. A., Latifah, A. Q., & Pahlevi, M. R. (2025). Preformulasi Sediaan Farmasi : Peran Design Expert. Jurnal Kesehatan Unggul Gemilang, 9(1), 26–33.
Bakker, A. B., & Demerouti, E. (2021). The Job Demands-Resources model: State of the art. Journal of Managerial Psychology, 22(3), 309–328. https://doi.org/10.1108/02683940710733115
Balnaves, M., & Caputi, P. (2011). Introduction to Quantitative Research Methods. In Introduction to Quantitative Research Methods (Issue January). https://doi.org/10.4135/9781849209380
Burinskiene, A. (2022). Forecasting Model: The Case of the Pharmaceutical Retail. Frontiers in Medicine, 9(August), 1–16. https://doi.org/10.3389/fmed.2022.582186
Ciceri, C., Borsani, C., Guida, M., Farinelli, M., & Caniato, F. (2025). Impact pathways: navigating risks in the pharmaceutical supply chain – a multi-actor perspective. International Journal of Operations and Production Management, 45(13), 53–62. https://doi.org/10.1108/IJOPM-06-2024-0458
Duevel, C. (2020). SAGE Research Methods. In The Charleston Advisor (Vol. 20, Issue 4). https://doi.org/10.5260/chara.19.4.38
Dwiyanti, V., Nurfadhilah, G. C., & ... (2021). Journal of Logistics and Supply Chain. Journal of …, 3(March), 49–56.
Ennajeh, L., Najjar, T., & Aloui, A. (2025). Digital Transformation through Artificial Intelligence in Organizations: A Systematic Literature Review. Journal of Information Technology Management, 17, 55–80. https://doi.org/10.22059/JITM.2025.100697
Ghannem, A., Nabli, H., Djemaa, R. Ben, & Sliman, L. (2024). Enhancing Pharmaceutical Supply Chain Resilience: A Comprehensive Review of
Visibility and Demand Forecasting. Research Square. https://doi.org/10.21203/rs.3.rs-3932079/v1
Handayany, G. N. (2021). Manajemen Farmasi (D. Winarni (ed.); Cetakan Pe, Vol. 2). EUREKA MEDIA AKSARA.
Hidayat, I. R., Zuhrotun, A., & Sopyan, I. (2020). Design-Expert Software sebagai Alat Optimasi Formulasi Sediaan Farmasi. Majalah Farmasetika, 6(1), 99–
120. https://doi.org/10.24198/mfarmasetika.v6i1.27842
Ilham, W., Putra, N., Kurniawan, E., Putri, T. E., & Molina, J. I. (2025). Analisis Sistem Forecasting Pada Produksi Dan Permintaan Telur Implementasi Metode Least Square. JATI (Jurnal Mahasiswa Teknik Informatika), 9(1), 1392–1398.
Jackson, I., Namdar, J., Saénz, M. J., Elmquist, R. A., & Dávila Novoa, L. R. (2024). Revolutionize cold chain: an AI/ML driven approach to overcome capacity shortages. International Journal of Production Research. https://doi.org/10.1080/00207543.2024.2398583
Jauhari, A., Anamisa, D. R., & Mufarroha, F. A. (2025). Time Series Method for Forecasting Model for Amount of Ginger Plant Production. Communications in Mathematical Biology and Neuroscience, 2025, 1–12. https://doi.org/10.28919/cmbn/8635
Kepolisian RI. (2022). Keputusan Kepala Kepolisian RI Nomor:Kep/1786/XII/2022 tentang Pembentukan Rumah Sakit Bhayangkara Blora.
Khajuria, N., Under, D., Advisor, F., & Lasch, R. (2024). Artificial Intelligence Powered Transformation in Supply Chain : A comparative study between Traditional model ( ARIMA ) and Neural Networks ( Long Short Term Memory ) approach for Time Series Demand Forecasting. At Dresden International University, Dresden.
Kosasih, E. E., & Brintrup, A. (2024). Towards trustworthy AI for link prediction in supply chain knowledge graph: a neurosymbolic reasoning approach. International Journal of Production Research. https://doi.org/10.1080/00207543.2024.2399713
Kurniawati, A., Ahmad, M. S., Fhadli, M., & Lutfi, S. (2023). Analisis Perbandingan Metode Time Series Forecasting Untuk Prediksi Penjualan Obat Di Apotek ( Studi Kasus : Kimia Farma Apotek Takoma ) Comparative Analysis of Methodstime Series Forecasting for Prediction of Drug Sales in Pharmacy ( Case Study : Chemica. Jurnal Jaringan Dan …, 3(1), 96–106. https://doi.org/00.0000/jati
Mac-seing, M., Ochola, E., Ogwang, M., Zinszer, K., & Zarowsky, C. (2022). Original Article Policy Implementation Challenges and Barriers to Access Sexual and Reproductive Health Services Faced By People With Disabilities : An Intersectional Analysis of Policy Actors ’ Perspectives in Post-Conflict Northern Uganda. Kerman University of Medical Sciences,
11(7), 1187–1196. https://doi.org/10.34172/ijhpm.2021.28
Marita, L. S., & Darwati, I. (2022). Prediksi Persediaan Barang Menggunakan Metode Weighted Moving Average, Exponential Smoothing dan Simple Moving Average. Jurnal Tekno Kompak, 16(1), 56.
https://doi.org/10.33365/jtk.v16i1.1484
Nabila Clydea Harahap, Putu Wuri Handayani, A. N. H. (2021). Barriers in Health Information Systems and Technologies to Support Maternal and Neonatal Referrals at Primary Health Centers. Healtcare Information Research, 27(2), 153–161.
Nurmaesah, N., Sirait, R. J., & Hikmah, A. (2022). Forecasting Information System with Single Exponential Smoothing Method in Pharmaceutical Companies PT. Priest Nirmala/Fahrenheit. Jurnal Sisfotek Global, 12(1), 79. https://doi.org/10.38101/sisfotek.v12i1.480
Octiva, C. S., Israkwaty, Nuryanto, U. W., Eldo, H., & Tahir, A. (2024). Application of Holt-Winter Exponential Smoothing Method to Design a Drug Inventory Prediction Application in Private Health Units. Jurnal Informasi Dan Teknologi, 6, 1–6. https://doi.org/10.60083/jidt.v6i1.464
Odnoletkova, I., Chalon, P. X., Devriese, S., & Cleemput, I. (2025). Projections of Public Spending on Pharmaceuticals: A Review of Methods. PharmacoEconomics, 43(4), 375–388. https://doi.org/10.1007/s40273-024- 01465-w
Rizaldy, F. M., Handayati, Y., Simatupang, T. M., Okdinawati, L., Suharto, Y., & Ginanjar, R. (2024). Comparative Analysis of Demand Forecasting Methods to Optimize Supply Chain Efficiency in PharmaHealth Group. International Journal of Current Science Research and Review, 07(08), 6271–6276. https://doi.org/10.47191/ijcsrr/v7-i8-40
Rotar, A. M., Botje, D., Klazinga, N. S., Lombarts, K. M., Groene, O., Sunol, R., & Plochg, T. (2016). The involvement of medical doctors in hospital governance and implications for quality management: A quick scan in 19 and an in depth study in 7 OECD countries. BMC Health Services Research, 16(2). https://doi.org/10.1186/s12913-016-1396-4
Sauvola, J., Loven, L., Nguyen, L., Haapola, J.-P., & Hyysalo, J. (2024). 6G in Logistics. University of Dulu.
Sinaga, H. D. E., Irawati, N., & Informasi, S. (2018). Perbandingan Double Moving Average Dengan Double Exponential Smoothing Pada Peramalan Bahan Medis Habis Pakai. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), IV(2).
Subramanian, B., Mishra, A., Ramkumar, B. V., Mandala, G., Kathamuthu, N. D., & Srithar, S. (2025). Big Data and Fuzzy Logic for Demand Forecasting in Supply Chain Management: A Data-Driven Approach. Journal of Fuzzy Extension and Applications, 6(2), 260–283. https://doi.org/10.22105/jfea.2025.488816.1703
Sugiyono. (2020). Metode Penelitian Pendekatan Kuantitatif Kualitatif (Issue August). Meedia Sains Indonesia.
Suparyanto dan Rosad. (2020). Manajemen Farmasi. In Suparyanto dan Rosad (2015 (Vol. 5, Issue 3). PENAMUDA MEDIA.
Suryawan, I. G. T., Luh, N., Pratiwi, S., Sudipa, I. G. I., Bagus, I., & Anandita, G. (2024). Performance of Moving Average and Exponential Smoothing Methods in Forecasting Demand for Blood Components Performance of Moving Average and Exponential Smoothing Methods in Forecasting Demand for Blood Components. Journal of Science and Technology, December. https://doi.org/10.5281/zenodo.14250561
Zhang, Z., Liu, Q., Hu, Y., & Liu, H. (2025). Multi-feature stock price prediction by LSTM networks based on VMD and TMFG. Journal of Big Data, 12(1). https://doi.org/10.1186/s40537-025-01127-4
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Muhamad Bayhaqi; Pipit Festi Wiliyanarti; Muhamad Ilham Hidayatullah, Yenny Rimbawan

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.

Global Journal of Health Administration by MARS UM Surabaya is liscence under Lisensi Creative Commons Atribusi 4.0 Internasional.
Authors retain all their rights to the article published by this journal, such as (but not limited to) the copyright and other proprietary rights relating to the article, such as patent rights; the right to use the substance of the article in own future works, including lectures and books; the right to reproduce the article for own purposes, the right to self-archive the article; the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the article's published version (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
