Perbandingan Pemilihan Solvent Berdasarkan Greener Solvent Guide

Isnaeni Isnaeni (1), Adinda Siti Almirah Fatima (2), Fathur Rahman Digda Putra Husada (3), Revo Juan Nashir Khairi (4), Happy Masiro Topayuda (5), Nailiy Salsabila (6), Dini Valerina Permata (7)
(1) Universitas Muhammadiyah Surabaya,
(2) Fakultas Farmasi, Universitas Airlangga, Surabaya, Indonesia, Indonesia,
(3) Fakultas Farmasi, Universitas Airlangga, Surabaya, Indonesia, Indonesia,
(4) Fakultas Farmasi, Universitas Airlangga, Surabaya, Indonesia, Indonesia,
(5) Fakultas Farmasi, Universitas Airlangga, Surabaya, Indonesia, Indonesia,
(6) Fakultas Farmasi, Universitas Airlangga, Surabaya, Indonesia, Indonesia,
(7) Fakultas Farmasi, Universitas Airlangga, Surabaya, Indonesia, Indonesia

Abstrak

Penggunaan pelarut konvensional seperti benzena, toluena, dan hidrokarbon klorinasi merupakan kontributor signifikan terhadap polusi lingkungan melalui emisi senyawa organik volatil (VOC) yang berdampak negatif pada kesehatan manusia dan ekosistem. Konsep green chemistry yang berlandaskan 12 prinsip telah menjadi pendekatan utama dalam mengembangkan pelarut ramah lingkungan atau green solvent, yang aman, berkelanjutan, dan memiliki toksisitas rendah. Artikel ini mengkaji berbagai jenis pelarut hijau seperti air, supercritical CO₂, bio-based solvents, deep eutectic solvents (DESs), dan ionic liquids (ILs). Meski green solvent menunjukkan keunggulan teknis dan lingkungan, implementasinya dalam industri masih menghadapi tantangan dari segi ekonomi, ketersediaan bahan baku, serta regulasi yang belum seragam. Diperlukan kolaborasi lintas sektor untuk mendorong adopsi pelarut hijau secara luas demi mewujudkan produksi kimia yang lebih ramah lingkungan dan berkelanjutan

Artikel teks lengkap

##article.generated_from_xml##

Referensi

Anastas, P., & Eghbali, N. (2010). Green Chemistry: Principles and Practice. Chemical Society Reviews, 39(1), 301–312. https://doi.org/10.1039/b918763b

Anastas, P. T., & Warner, J. C. (1998). Green chemistry: Theory and practice. Oxford University Press.

Bai, X., Liu, W., Wu, B., Liu, S., Liu, X., Hao, Y., Liang, W., Lin, S., Luo, L., Zhao, S., Zhu, C., Hao, J., & Tian, H. (2023). Emission characteristics and inventory of volatile organic compounds from the Chinese cement industry based on field measurements. Environmental Pollution, 316. https://doi.org/10.1016/j.envpol.2022.120600

Byrne et al. (2016). Tools and techniques for solvent selection: Green solvent selection guides. Sustainable Chemical Processes, 4(1), 7. https://doi.org/10.1186/s40508-016-0051-z

Capello, C., Fischer, U., & Hungerbühler, K. (2007). What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chemistry, 9(9), 927–934. https://doi.org/10.1039/B617536H

Clark, C. J., Tu, W.-C., Levers, O., Brohl, A., & Hallett, J. P. (2018). Green and Sustainable Solvents in Chemical Processes. Chemical Reviews. https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00571

Fatima, A., Shahzadi, A., Majeed, A., Al-Rawi, S. S., Ibrahim, A. H., Iqbal, M. J., & Qaleel, F. (2025). Green catalysis: Water as a sustainable medium in organocatalyzed reactions. Langmuir, 41(13), 8451–8479. https://doi.org/10.1021/acs.langmuir.4c05355

Giner, E., Casado, J., Santoyo, S., & Jaime, L. (2025). Deep eutectic solvent systems as media for the selective extraction of anti-inflammatory bioactive agents. Molecules, 30(16), 3357. https://doi.org/10.3390/molecules30163357

Government of Canada. (2025). Air pollutant emissions inventory report 2025: Chapter 2.4 – VOCs. diakses pada 5 September 2025 https://www.canada.ca/en/environment-climate-change/services/air-pollution/publications/emissions-inventory-report-2025/chapter-2-4.html

He, J. (2024). Deep eutectic solvents as extraction media for food-derived biomacromolecules. Food Hydrocolloids. https://doi.org/10.1016/j.trac.2024.117521

Hessel, V., Tran, N. N., Asrami, M. R., Tran, Q. D., Long, N. V. D., Escribà-Gelonch, M., ... & Sundmacher, K. (2022). Sustainability of green solvents–review and perspective. Green Chemistry, 24(2), 410-437.

James et al., (2012) Mechanochemistry: oppor tunities for new and cleaner synthesis. Chem Soc Rev 41:413–447

Kumar, A., Kumar, V., Singh, P., Tittal, R. K., & Lal, K. (2024). Ionic liquids for the green synthesis of 1,2,3-triazoles: A systematic review. Green Chemistry. https://doi.org/10.1039/D3GC04898E

Kerton FM, Marriott R (2013) Alternative solvents for green chemistry, 2nd edn. RSC publishing, Cambridge

Kreuder, A. D. V.., House-Knight, T., Whitford, J., Ponnusamy, E., Miller, P., Jesse, N., Rodenborn, R., Sayag, S., Gebel, M., Aped., I., Sharfstein, I., Manaster, E., Ergaz, I., Harris, A., & Lisa, N G. (2017). A method for assessing greener alternatives between chemical products following the 12 principles of green chemistry. ACS Sustainable Chemistry & Engineering, 5(4), 2927-2935.

Lancaster, M. (2025). Green chemistry: an introductory text. Royal society of chemistry.

Li, C. (2024). Pretreatment of biomass with ethanol/deep eutectic solvent towards higher component recovery and obtaining lignin with high β-O-4 content. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2024.133751

Lui, S. (2024). Hydrothermal liquefaction with 2-MeTHF co-solvent enhances bio-crude yieldHydrothermal liquefaction of different waste biomass using green solvent 2-methyltetrahydrofuran as extractant and co-solvent. Sustainable Energy & Fuels. https://doi.org/10.1039/D4SU00259H

Nanda, B., Sailaja, M., Mohapatra, P., Pradhan, R. K., & Nanda, B. B. (2021). Green solvents: A suitable alternative for sustainable chemistry. Materials Today: Proceedings, 47(5), 1234–1240. https://doi.org/10.1016/j.matpr.2021.06.458

Panda, S., & Gorantla, S. (2025). Green Analytical Approaches and Eco-Friendly Solvents: Advancing Industrial Applications and Environmental Sustainability: A Comprehensive Review. Orient J Chem.

Płotka‐Wasylka, J., Kurowska‐Susdorf, A., Sajid, M., de la Guardia, M., Namieśnik, J., & Tobiszewski, M. (2018). Green chemistry in higher education: state of the art, challenges, and future trends. ChemSusChem, 11(17), 2845-2858.

Prat, D., Pardigon, O., Flemming, H. W., Letestu, S., Ducandas, V., Isnard, P., Guntrum, E., Senac, T., Ruisseau, S., Cruciani, P., & Hosek, P. (2016). Sanofi’s solvent selection guide: A step toward more sustainable processes. Organic Process Research & Development, 17(12), 1517–1525. https://doi.org/10.1021/op4002564

Ražić, S., Arsenijević, J., Mračević, S. Đ., Mušović, J., & Trtić-Petrović, T. (2023). Greener chemistry in analytical sciences: From green solvents to applications in complex matrices. The Analyst, 148(9), 1875–1890. https://doi.org/10.1039/D3AN00498H

Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry, 4th edn. Wiley-VCH, Weinheim

Royal Society of Chemistry (RSC). (2025). Principles of green chemistry: Building a sustainable future. Discover Chemistry. https://link.springer.com/article/10.1007/s44371-025-00152-9

Sheldon, R. A., Arends, I., & Hanefeld, U. (2007). Green chemistry and catalysis. John Wiley & Sons.

Sheldon, R. A. (2008). Why green chemistry and sustainability of resources are essential to our future. Journal of Environmental Monitoring, 10(4), 406–407. https://doi.org/10.1039/b801651h

USP. (2024). USP–NF 2024: United States Pharmacopeia and National Formulary. U.S. Pharmacopeial Convention.

Warner, J. C., Cannon, A. S., & Dye, K. M. (2004). Green chemistry. Environmental Impact Assessment Review, 775-799.

Welton, T. (2015). Solvents and sustainable chemistry. Chemical Society Reviews. https://pmc.ncbi.nlm.nih.gov/articles/PMC46858

Winterton, N. (2021). The green solvent: A critical perspective. Clean technologies and environmental policy, 23(9), 2499-2522.

Yıldırım, M., Erşatır, M., Poyraz, S., Amangeldinova, M., Kudrina, N. O., & Terletskaya, N. V. (2024). Green extraction of plant materials using supercritical CO₂: Insights into methods, analysis, and bioactivity. Plants, 13(16), 2295. https://doi.org/10.3390/plants13162295

Zielinski, M. (2025). Green chemistry in the chemical industry: Innovations for a sustainable future. Journal of Pharmaceutical Chemistry & Chemical Science, 9(1), 180. https://www.alliedacademies.org/articles/green-chemistry-in-the-chemical-industry-innovations-for-a-sustainable-future-32860.html

Zuin, V. G., Eilks, I., Elschami, M., & Kümmerer, K. (2021). Education in green chemistry and in sustainable chemistry: perspectives towards sustainability. Green Chemistry, 23(4), 1594-1608.

Zheng, Y. (2025). Sustainable extraction of Actinostemma lobatum kernel oil by 2-methyltetrahydrofuran: A comparative study on physicochemical properties and bioactive compounds against petro-sourced solvents. Foods, 14(10), 1682. https://doi.org/10.3390/foods14101682

Penulis

Isnaeni Isnaeni
isna.yudi@gmail.com (Kontak utama)
Adinda Siti Almirah Fatima
Fathur Rahman Digda Putra Husada
Revo Juan Nashir Khairi
Happy Masiro Topayuda
Nailiy Salsabila
Dini Valerina Permata

Rincian Artikel