Bioremediasi Cemaran Tanah Menggunakan Biostimulant

Isnaeni Isnaeni (1), Aisha Bella Calvina (2), Alma Dita Ardiana (3), Chofifatus Solecha Azzahra (4), Nadya Rachmania Santosa (5), Nanda Fadlilatul Miladya (6), Nazwa Zahira Anwar (7)
(1) Study Program of Pharmacy, Health Science Faculty, Universitas Muhammadiyah Surabaya, Indonesia, Indonesia,
(2) Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia, Indonesia,
(3) Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia, Indonesia,
(4) Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia, Indonesia,
(5) Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia, Indonesia,
(6) Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia, Indonesia,
(7) Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia, Indonesia

Abstrak


Semakin meningkatnya perhatian dalam bioremediasi adalah penggunaan biostimulan yang dapat meningkatkan aktivitas mikroorganisme dalam tanah dan mempercepat proses degradasi kontaminan. Bioremediasi adalah proses biologis yang melibatkan penggunaan mikroorganisme, tanaman, atau enzim untuk mendekomposisi, menetralkan, atau menghilangkan kontaminan dari lingkungan tercemar, terutama dari tanah, air, dan udara. Bioremediasi secara in-situ adalah biodegradasi oleh mikroba pada kontaminasi dalam matriks tanah bawah permukaan dan dapat diolah di lokasi terjadinya cemaran. Bioremediasi secara ex-situ memerlukan penggalian tanah yang terkontaminasi dan dilakukan di luar lokasi terjadinya cemaran. Teknik ex-situ tidak digunakan pada tanah yang berada di pusat kota ataupun di bawah bangunan, karena membutuhkan ruang penggalian yang cukup besar. Cemaran tanah dapat didefinisikan sebagai suatu zat dalam tanah pada konsentrasi yang lebih tinggi dari biasanya oleh bahan limbah yang memiliki dampak merugikan kesehatan manusia dan ekosistem. Bahan limbah umumnya dibuang ke perairan sebagai cairan, di mana sebagian dapat larut, sementara yang lainnya dapat mengendap di permukaan tanah, kemudian meresap ke dalam dan mencemari tanah. Cemaran kemudian dapat bergerak lebih dalam ke lapisan tanah melalui proses perkolasi, yang bergerak dari lokasi dengan konsentrasi tinggi ke konsentrasi lebih rendah. Pergerakan cemaran melalui perkolasi dapat menyebabkan pencemaran air tanah, yang merupakan sumber vital bagi banyak ekosistem dan pemukiman manusia. Biostimulan Organic Waste (BOW) berbahan baku sampah organik pasar memiliki nilai unsur-unsur C-organik, N, P dan K yang tinggi. Nilai unsur-unsur telah memenuhi persyaratan teknis minimal pupuk cair organik dan pembenah tanah.


Artikel teks lengkap

##article.generated_from_xml##

Referensi

Abd Elnabi, M. K., Elkaliny, N. E., Elyazied, M. M., Azab, S. H., Elkhalifa, S. A., Elmasry, S., Mouhamed, M. S., Shalamesh, E. M., Alhorieny, N. A., Abd Elaty, A. E., Elgendy, I. M., Etman, A. E., Saad, K. E., Tsigkou, K., Ali, S. S., Kornaros, M., & Mahmoud, Y. A. (2023). Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics, 11(7), 580. https://doi.org/10.3390/toxics11070580

Abdillah, H., Cahyarini, N. S., & Mahardhika, M. A. (2018). Biostimulan Bioremediasi dari Limbah Organik Pasar Sebagai Solusi Pencemaran Limbah Pertambangan Minyak. Seminar Nasional Teknik Kimia Ecosmart, 56–64. https://jurnal.uns.ac.id/ecosmart/article/view/29576

Adeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment international, 99, 107-119. https://doi.org/10.1016/j.envint.2016.12.010

Almazrouei, B., Islayem, D., Alskafi, F., Catacutan, M. K., Amna, R., Nasrat, S., Sizirici, B., & Yildiz, I. (2023). Steroid hormones in wastewater: Sources, treatments, environmental risks, and regulations. Emerging Contaminants, 9(2), Article 100210. https://doi.org/10.1016/j.emcon.2023.100210

Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology & Biotechnology, 32(11). https://doi.org/10.1007/S11274-016-2137-X

Bartucca, M. L., Cerri, M., Del Buono, D., & Forni, C. (2022). Use of Biostimulants as a New Approach for the Improvement of Phytoremediation Performance—A Review. Plants 2022, Vol. 11, Page 1946, 11(15), 1946. https://doi.org/10.3390/PLANTS11151946

Bartucca, M. L., Cerri, M., Del Buono, D., & Forni, C. (2022). Use of Biostimulants as a New Approach for the Improvement of Phytoremediation Performance—A Review. Plants 2022, Vol. 11, Page 1946, 11(15), 1946. https://doi.org/10.3390/PLANTS11151946

Braschi, I., Blasioli, S., Fellet, C., Lorenzini, R., Garelli, A., Pori, M., & Giacomini, D. (2013). Persistence and degradation of new β-lactam antibiotics in the soil and water environment. Chemosphere, 93(1), 152-159. https://doi.org/10.1016/j.chemosphere.2013.05.016

Briški, F. & Vuković Domanovac, M. (2017). Environmental microbiology. Physical Sciences Reviews, 2(11), 20160118. https://doi.org/10.1515/psr-2016-0118

Brown, L. D., Cologgi, D. L., Gee, K. F., & Ulrich, A. C. (2017). Bioremediation of Oil Spills on Land. 699-729. https://doi.org/10.1016/B978-0-12-809413-6.00012-6

Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1–2), 3–41. https://doi.org/10.1007/s11104-014-2131-8

Cycoń, M., Mrozik, A., & Piotrowska-Seget, Z. (2019). Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Frontiers in microbiology, 10, 338. https://doi.org/10.3389/fmicb.2019.00338

Del Buono, D. (2020). Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. The Science of the Total Environment, 751, 141763. https://doi.org/10.1016/j.scitotenv.2020.141763

Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae,196,3–14. https://doi.org/10.1016/j.scienta.2015.09.021

Dores-silva, P. R., Cotta, J. A.O., Landgraf, M. D., & Rezende, M. O.O. (2019). The application of the vermicomposting process in the bioremediation of diesel contaminated soils. 54, 598-604. https://doi.org/10.1080/03601234.2019.1611303

Fidiastuti, H. R., Prabowo, C. A., Lathifa, A. S., Amin, M., & Utomo, Y. (2019). Bioremediasi Limbah Industri Pemanfaatan Mikroba dalam Pengolahan Limbah Industri. Forind (p.97). http://repository.unitri.ac.id/2200/1/

Folch, A., Vilaplana, M., Amado, L., Vicent, T., & Caminal, G. (2013). Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. Journal of Hazardous Materials, 262, 554-560. https://doi.org/10.1016/j.jhazmat.2013.09.004

Forni, C., Duca, D., & Glick, B. R. (2017). Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil, 410(1–2), 335–356. https://doi.org/10.1007/s11104-016-3007-x

Frascari, D., Zanaroli, G., & Danko, A. S. (2015). In situ aerobic cometabolism of chlorinated solvents: A review. Journal of Hazardous Materials, 283, 382-399. https://doi.org/10.1016/j.jhazmat.2014.09.041

Gao, J., Faheem, M., & Yu, X. (2022). Global research on contaminated soil remediation: a bibliometric network analysis. Land, 11(9), 1581. https://doi.org/10.3390/land11091581

Gamalero, E.; Berta, G.; Massa, N.; Glick, B.R.; Lingua, G. Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. J. Appl. Microbiol. 2009, 108, 236–245.

Grenni, P., Ancona, V., & Caracciolo, A. B. (2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, 136, 25-39. https://doi.org/10.1016/j.microc.2017.02.006

Havugimana, E. R. N. E. S. T. E., Bhople, B. S., Kumar, A. N. I. L., Byiringiro, E. M. M. A. N. U. E. L., Mugabo, J. P., & Kumar, A. R. U. N. (2017). Soil pollution–major sources and types of soil pollutants. Environmental science and engineering, 11, 53-86. https://ocd.lcwu.edu.pk/cfiles/Environmental%20Sciences/Maj/Env-110/

He, X., Zhang, Y., Shen, M., Zeng, G., Zhou, M., & Li, M. (2016). Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with additive materials. Bioresource Technology, 218, 867-873. https://doi.org/10.1016/j.biortech.2016.07.045

Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X., & He, Z. (2018). Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. Journal of environmental management, 207, 159-168. https://doi.org/10.1016/j.jenvman.2017.10.072

Karmegam, N., Vijayan, P., Prakash, M., & Paul, J. A. J. (2019). Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. Journal of Cleaner Production, 228, 718-728. https://doi.org/10.1016/j.jclepro.2019.04.313

Khan, F., Siddique, A. B., Shabala, S., Zhou, M., & Zhao, C. (2023). Phosphorus Plays Key Roles in Regulating Plants' Physiological Responses to Abiotic Stresses. Plants (Basel, Switzerland), 12(15), 2861. https://doi.org/10.3390/plants12152861

Koteswararao, P. R., Tulasi, S. L., & Pavani, Y. (2014). Impact of Solvents on Environmental Pollution. Journal of Chemical and Pharmaceutical Sciences, (3), 132–135. ISSN: 0974-2115. https://www.jchps.com/specialissues/

Kumari, V., & Shukla, S. K. (2021). Bioremediation of heavy metals: Emerging trends and future prospects. Journal of Environmental Chemical Engineering, 9(5), 106004. https://doi.org/10.1016/j.jece.2021.106004

Li, L., Han, L., Liu, A., & Wang, F. (2022). Imperfect but Hopeful: New Advances in Soil Pollution and Remediation. International journal of environmental research and public health, 19(16), 10164. https://doi.org/10.3390/ijerph191610164

Melati, I. (2020). Teknik Bioremediasi: Keuntungan, Keterbatasan, dan Prospek Riset. Prosiding Seminar Nasional BIOTIK, 8(1), 273-283. http://doi.org/10.22373/pbio.v8i1.9650.g5433

Mitchell, S. M., Ullman, J. L., Teel, A. L., & Watts, R. J. (2015). Hydrolysis of amphenicol and macrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin. Chemosphere, 134, 504-511. https://doi.org/10.1016/j.chemosphere.2014.08.050

Münzel, T., Hahad, O., Daiber, A., & Landrigan, P. J. (2023). Soil and water pollution and human health: what should cardiologists worry about?. Cardiovascular research, 119(2), 440–449. https://doi.org/10.1093/cvr/cvac082

Nadhirawaty, R., & Titah, H. S. (2019). Simultaneous Bioaugmentation and Biostimulation to Remediate Soil Contaminated by Ship Dismantling in Bangkalan District, Indonesia. Journal of health & pollution, 9(24), 191212. https://doi.org/10.5696/2156-9614-9.24.191212

Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment international, 125, 365-385. https://doi.org/10.1016/j.envint.2019.01.067

Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, S., Lehnhoff, E. A., & Beck, L. (2023, June 1). Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy. MDPI. https://doi.org/10.3390/agronomy13061521

Romantschuk, M., Lahti-Leikas, K., Kontro, M., Galitskaya, P., Talvenmäki, H., Simpanen, S., Allen, J. A., & Sinkkonen, A. (2023). Bioremediation of contaminated soil and groundwater by in situ biostimulation. Frontiers in microbiology, 14, 1258148. https://doi.org/10.3389/fmicb.2023.1258148

Roy, M., Giri, A. K., Dutta, S., & Mukherjee, P. (2015). Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environment International, 75, 180-198. https://doi.org/10.1016/j.envint.2014.11.010

Su, Q., Zhang, X., Zhang, Y., Sun, G., Li, Z., Xiang, L., & Cai, J. (2023). Risk assessment of heavy metal pollution in agricultural soil surrounding a typical pharmaceutical manufacturing complex. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1105910

Sun, J., He, X., Yilin, L. E., Al-Tohamy, R., & Ali, S. S. (2024). Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals. Journal of Environmental Management, 352, 120081. https://doi.org/10.1016/j.jenvman.2024.120081

Thapa, B., Ajay Kumar, K. C., & Ghimire, A. (2012). A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu University Journal of Science, Engineering and Technology, 8(1), 164-170. https://doi.org/10.3126/kuset.v8i1.6056

Xin, X., Shentu, J., Zhang, T., Yang, X., Baligar, V. C., & He, Z. (2022). Sources, indicators, and assessment of soil contamination by potentially toxic metals. Sustainability, 14(23), 15878. https://doi.org/10.3390/su142315878

Penulis

Isnaeni Isnaeni
isna.yudi@gmail.com (Kontak utama)
Aisha Bella Calvina
Alma Dita Ardiana
Chofifatus Solecha Azzahra
Nadya Rachmania Santosa
Nanda Fadlilatul Miladya
Nazwa Zahira Anwar

Rincian Artikel